УДК 535.343.2;535.37

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ИОНОВ АІ И Се НА ПОГЛОЩЕНИЕ И ЛЮМИНЕСЦЕНЦИЮ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК Gd₃(Al,Ga)₅O₁₂:Ce³⁺

© 2015 г. Д. А. Васильев^{*,**}, Д. А. Спасский^{***, ****}, В. В. Воронов^{*****}, В. О. Соколов^{**}, А. В. Хахалин^{******}, Н. В. Васильева^{*****}, В. Г. Плотниченко^{**, ******}

*Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук, Москва

**Научный центр волоконной оптики Российской академии наук, Москва

***Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына

Московского государственного университета им. М.В. Ломоносова

****Институт физики Тартуского университета, Эстония

*****Институт общей физики им. А.М. Прохорова Российской академии наук, Москва

***** Московский государственный университет им. М.В. Ломоносова

******Московский физико-технический институт Государственный университет Долгопрудный

e-mail: dimaphys@gmail.com

Поступила в редакцию 23.01.2015 г.

Изучено влияние ионов Al и Ce на оптическое поглощение и люминесценцию монокристаллических пленок (Pb,Gd)_{3 – y}Ce_yAl_xGa_{5 – x}O₁₂, где x = 2.02, 2.09, 2.13, 2.17, 2.22 и y = 0.02, 0.06, 0.07, выращенных методом жидкофазной эпитаксии из переохлажденных растворов-расплавов на основе системы PbO–B₂O₃ на монокристаллических подложках Gd₃Ga₅O₁₂ с ориентацией (111) при концентрациях оксида алюминия 2.0, 2.1 и 2.2 мол. % и оксида церия 0.03 и 0.2 мол. % в шихте. Определен сдвиг полос поглощения уровней 5d₁ и 5d₂ ионов Ce³⁺ в зависимости от концентрации Al в пленках. Показано, что интенсивность полос люминесценции иона Ce³⁺ увеличивается с ростом содержания Al и Ce в пленках.

DOI: 10.7868/S0002337X15090195

ВВЕДЕНИЕ

Данная работа является продолжением статьи [1], в которой показано, что с увеличением концентрации алюминия до *х* = 1.9 в эпитаксиальных пленках $Gd_3Al_xGa_{5-x}O_{12}$: Ce³⁺, выращенных из переохлажденных растворов-расплавов на основе системы PbO-B2O3 с концентрациями оксида алюминия *C*(Al₂O₃) = 1, 1.5 и 2 мол. % и оксида церия $C(\text{CeO}_2) = 0.03 \text{ и } 0.2 \text{ мол.} \%$ в шихте на монокристаллических подложках гадолиний-галлиевого граната (ГГГ) Gd₃Ga₅O₁₂ методом жидкофазной эпитаксии (ЖФЭ), происходит сдвиг двух полос поглощения иона Ce³⁺. Уровень 5d₂ смещается на 5 нм с максимума полосы поглощения 346 нм для пленки Pb_{0.02}Ce_{0.03}Gd_{2.95}Ga₅O₁₂ (1 ат. % Ce³⁺) на 341 нм для пленки Pb_{0.03}Ce_{0.06}Gd_{2.91}Al_{1.9}Ga_{3.1}O₁₂ (2 ат. % Ce³⁺), а уровень $5d_1$ – с 426 на 438 нм (сдвиг на 12 нм). При этом в статье [1] показано увеличение интенсивности полосы люминесценции иона Ce³⁺ с максимумом 550 нм в 8 раз при увеличении концентрации иона Al от 1.1 до 1.9 и увеличение ширины запрещенной зоны на 0.2 эВ. Также в статье [1] обнаружен устойчивый рост интенсивности люминесценции при увеличении энергии фотонов возбуждения в широкой области от УФ-диапазона до мягкого рентгена (220 эВ), что свидетельствует об эффективном преобразовании высокоэнергетического излучения в люминесценцию.

Интерес к материалу Gd_{2.97}Ce_{0.03}Al₂Ga₃O₁₂ (1 ат. % Се³⁺) вызван обнаружением значительного световыхода до 46000 фотонов/МэВ, хорошего энергетического разрешения – 4.9% при 662 кэВ, высокой плотности -6.63 г/см³, а также отсутствием радиоактивности и гигроскопичности [2]. Монокристаллы $Gd_{2.97}Ce_{0.03}Al_2Ga_3O_{12}$, выращенные методом Чохральского, применяются в качестве детекторов излучения для обнаружения рентгеновских, гамма-, альфа-, бета-, нейтронных лучей и используются в устройствах медицинской визуализации [3]. Оптические свойства этого материала продолжают изучать для выяснения их зависимости от отношения концентраций Ga/Al и более четкого понимания процессов преобразования энергии возбуждения в сцинтилляционный отклик, а также влияния тушения люминесценции на эти процессы [4-6].

Целью настоящей работы являлось сравнение оптических свойств монокристаллических пленок $Gd_3(Al,Ga)_5O_{12}$:Се, выращенных из раствороврасплавов с более высокой концентрацией оксида алюминия по сравнению с [1] (2.0, 2.1 и 2.2 мол. %) при той же концентрации оксида церия в шихте (0.03 и 0.2 мол. %).

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ИОНОВ АІ И Се НА ПОГЛОЩЕНИЕ

Серия раствора- расплава	<i>С</i> (Al ₂ O ₃), мол. %	<i>С</i> (CeO ₂), мол. %	R_1	<i>R</i> ₂	δ <i>t</i> ,°C	<i>h</i> _{max} , мкм	$f_g^{\max},$ мкм/мин
Ι	2.0	0.03	35.42	15.71	985-962	15.9	0.37
II	2.1	0.03	35.81	15.69	968–964	30.4	0.34
III	2.2	0.03	36.19	15.67	969–964	17.0	0.24
IV	2.0	0.2	15.35	15.68	939–934	17.0	0.28
V	2.1	0.2	15.52	15.66	956-937	20.9	0.34
VI	2.2	0.2	15.68	15.64	957-946	19.6	0.51

Таблица 1. Состав шихты и ростовые параметры эпитаксиальных пленок Gd₃(Al,Ga)₅O₁₂:Се

Примечание. δt – диапазон температур, в котором определялась температура насыщения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эпитаксиальные пленки $Gd_3(Al,Ga)_5O_{12}$:Се были выращены на воздухе методом ЖФЭ из переохлажденных растворов-расплавов на основе системы PbO-B₂O₃ на монокристаллических подложках ГГГ с ориентацией (111) при концентрации $C(Al_2O_3) = 2.0, 2.1$ и 2.2 мол. % и $C(CeO_2) = 0.03$ и 0.2 мол. % в шихте (табл. 1). Концентрация оксида гадолиния во всех растворах-расплавах составляла 0.2 мол. %. Состав шихты для эпитаксиальных пленок характеризовался следующими мольными отношениями компонентов R_1 и R_2 (табл. 1):

 $R_1 = ([Ga_2O_3] + [Al_2O_3])/([Gd_2O_3] + [2CeO_2]),$ $R_2 = [PbO]/[B_2O_3].$

Для приготовления шихты были использованы оксиды следующих квалификаций и марок: РbO Д/СПА – "х. ч", B_2O_3 – OCЧ 11-3, Gd_2O_3 – ГдО-1, CeO₂ – ЦеО-СС, Ga_2O_3 – OCЧ 15-2, Al_2O_3 – "ч. д. а".

Выращено 25 образцов (пленка-подложкапленка) 10 × 15 мм из шести серий свежеприготовленных растворов-расплавов (см. табл. 1) по технологии, описанной в работе [7]. Время роста эпитаксиальных пленок при разном переохлаждении ∆*t* составляло 5, 10, 30, 60, 75, 80, 90 или 120 мин. Скорость вращения подложки – 50, 100, 124 или 132 об/мин. Для каждой серии раствороврасплавов определены максимальная толщина h_{\max} пленок и максимальная скорость роста f_g^{\max} наблюдавшиеся в экспериментах (табл. 1). Следует отметить, что с увеличением $C(Al_2O_3)$ в шихте от 2.0 до 2.2 мол. % скорость роста пленок падала при выращивании из I-III серий растворов-расплавов с $C(CeO_2) = 0.03$ мол. %, что свидетельствует о выходе из области роста, и возрастала при выращивании из IV-VI серий растворов-расплавов с $C(CeO_2) = 0.2$ мол. % в шихте (табл. 1). На рис. 1 показаны вертикальное сечение политермического разреза с кривыми ликвидуса (1) и не-

Рис. 1. Вертикальное сечение политермического разреза псевдотройной системы Gd_2O_3 — CeO_2 — Ga_2O_3 — Al_2O_3 —(PbO + B_2O_3) с кривыми ликвидуса (*I*) и неравновесного солидуса (*2*) с *C*(CeO₂) = 0.03 мол. % (а) и *C*(CeO₂) = 0.2 мол. %) (б).

Рис. 2. Микрофотография спонтанно выросших на поверхности раствора-расплава кристаллов граната состава $Pb_{0.40}Ce_{0.03}Gd_{2.57}Al_{2.4}Ga_{2.60}O_{12}$ (левый), $Pb_{0.49}Ce_{0.03}Gd_{2.48}Al_{2.65}Ga_{2.35}O_{12}$ (верхний правый), $Pb_{0.44}Ce_{0.05}Gd_{2.51}Al_{1.93}Ga_{3.07}O_{12}$ (нижний правый) при росте эпитаксиальной пленки $Pb_{0.02}Ce_{0.02}Gd_{2.96}Al_{2.17}Ga_{2.83}O_{12}$ (II-1).

равновесного солидуса (2), а также значения температуры, при которых осуществлялся рост пленок. Температура насыщения оставалась постоянной при росте пленок из I–III серий растворов-расплавов, а при росте из IV–VI серий наблюдалось ее увеличение.

При выращивании пленок из I–III серий растворов-расплавов, как и в работе [1], обнаружены две области роста. В первой области с относительно малым переохлаждением ($\Delta t < 25^{\circ}$ C) вырастают пленки бледно-желтые, а во второй области с большим переохлаждением ($\Delta t > 25^{\circ}$ C) — бледнофиолетовые. Все выращенные пленки из IV–VI серий растворов-расплавов были желтовато-зеленого цвета.

Выращивание эпитаксиальных пленок методом ЖФЭ при определенных переохлаждениях сопровождалось ростом спонтанных кристаллов на поверхности раствора-расплава, на стенках платинового тигля и на поверхности платинового держателя, при этом росли кристаллы граната в форме тетрагонтриоктаэдра с гранями {211}, как в работе [1], с длинами ребер тетрагона не менее 4 и 2.5 мкм (рис. 2). Приведенные на рис. 2 кристаллы росли 2 ч вместе с пленкой II—1 (табл. 2). Обнаружено, что концентрация ионов Pb в этих кристаллах примерно в 20 раз превосходит их концентрацию в пленке.

Суммарную толщину (2h) пленок, выращенных на обеих сторонах подложки, определяли методом взвешивания [7]. Определение химического состава пленок проводилось с использованием электронно-ионного сканирующего микроскопа Quanta 3D FEG фирмы FEI. Рентгеноструктурные исследования пленок проводились на рентгеновском дифрактометре Bruker D8 Discover A25 Da Vinsi Design (излучение CuK_{α}). Спектры пропускания пленок измеряли на спектрофотометре Lambda 900 фирмы Perkin-Elmer при комнатной температуре в диапазоне длин волн от 186 до 860 нм. Спектры нормализованной оптической плотности D/2h рассчитывали из спектров пропускания по формуле $D = [\ln(T_{sab}/T_{sam})]$, где T_{sab} – спектр пропускания подложки и T_{sam} – спектр пропускания образца. Измерения спектров лю-

Пленка	<i>С</i> (Al ₂ O ₃), мол. %	<i>С</i> (CeO ₂), мол. %	Состав пленки	t _g ,°C	Δt,°C	<i>h</i> , мкм	λ _{Ce} , нм	
							$5d_1$	5 <i>d</i> ₂
I-1	2.0	0.03	$Pb_{0.02}Ce_{0.02}Gd_{2.96}Al_{2.13}Ga_{2.87}O_{12}$	962	8	15.9	435.8	342.5
II-1	2.1	0.03	$Pb_{0.02}Ce_{0.02}Gd_{2.96}Al_{2.17}Ga_{2.83}O_{12}$	964	3	30.4	437	340.9
III-1	2.2	0.03	$Pb_{0.01}Ce_{0.02}Gd_{2.97}Al_{2.02}Ga_{2.98}O_{12}$	963	4	17.0	434.7	325.9
IV-1	2.0	0.2	$Pb_{0.02}Ce_{0.06}Gd_{2.93}Al_{2.09}Ga_{2.91}O_{12}$	934	4	17.0	437.9	341.9
V-1	2.1	0.2	$Pb_{0.04}Ce_{0.07}Gd_{2.89}Al_{2.13}Ga_{2.87}O_{12}$	925	21	20.9	438.2	341.7
VI-1	2.2	0.2	$Pb_{0.02}Ce_{0.06}Gd_{2.92}Al_{2.22}Ga_{2.78}O_{12}$	925	25	18.2	438.6	340.4

Таблица 2. Ростовые характеристики эпитаксиальных пленок Gd₃(Al,Ga)₅O₁₂:Се

Примечание. t_g – температура роста, Δt – переохлаждение.

Рис. 3. Спектры люминесценции при возбуждении на 340 нм подложки ГГГ (*1*) и пленок, выращенных из растворов-расплавов с *C* (CeO₂) = 0.03%, III-1 (*2*), I-1 (*3*), II-1 (*4*) (a); пленок, выращенных из растворов-расплавов с *C*(CeO₂) = 0.2%, IV-1 (*1*), V-1 (*2*) и VI-1 (*3*) (б) (см. табл. 2).

минесценции и возбуждения в видимой и ультрафиолетовой областях проводились на спектроскопической установке на основе спектрографа LOT-Oriel MS-257. Были измерены спектры люминесценции в области 350–850 нм и спектры возбуждения люминесценции образцов в области 300–500 нм при комнатной температуре. При измерении спектров люминесценции при возбуждении длиной волны 440 нм перед входной шелью спектрографа устанавливался фильтр OC-11, поглощающий излучение короче 510 нм. Спектры люминесценции нормировались на аппаратную функцию установки.

Рис. 4. Спектры люминесценции эпитаксиальных пленок при возбуждении на 440 нм, выращенных из растворов-расплавов с C (CeO₂) = 0.03%, III-1 (1), I-1 (2), II-1 (3) (a); пленок, выращенных из растворов-расплавов с C (CeO₂) = 0.2%, IV-1 (1), V-1 (2), VI-1 (3) (б) (см. табл. 2).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Люминесценция ионов Ce³⁺ наблюдалась во всех пленках, выросших из 6 серий раствороврасплавов. Для сравнения спектров люминесценции из каждой серии была выбрана пленка, которая имела максимальную интенсивность (табл. 2).

Спектры люминесценции выращенных пленок представлены на рис. 3 и 4. Они представляют собой широкую неэлементарную полосу с максимумом при 550 нм, вызванную излучательными переходами $5d^{-2}F_{7/2, 5/2}$ в ионах Ce³⁺. Интенсивность люминесценции Ce³⁺ в пленках, выращенных

Рис. 5. Спектральные зависимости нормализованной оптической плотности D/2h от частоты для эпитаксиальных пленок, выращенных из растворов-расплавов с $C(\text{CeO}_2) = 0.03$ (а) и 0.2 мол. % (б): а – I-1 (I), II-1 (2), III-1 (3); б – IV-1 (I), V-1 (2), VI-1 (3) (см. табл. 2).

из растворов-расплавов с $C(\text{CeO}_2) = 0.03$ мол. %, возрастает по мере увеличения концентрации Al в пленке при возбуждении на 340 нм в 2.5 раза и при возбуждении на 440 нм в 3 раза. Максимальной интенсивностью люминесценции при возбуждении на 340 нм (рис. 3а) и на 440 нм (рис. 4а) обладает пленка Pb_{0.02}Ce_{0.02}Gd_{2.96}Al_{2.17}Ga_{2.83}O₁₂ (II-1), которая имеет максимальную концентрацию ионов Al (x == 2.17) и 0.7 ат. % Ce³⁺. В спектрах люминесценции пленок III-1 и II-1, представленных на рис. За в диапазоне длин волн от 350 до 450 нм, наблюдаются дополнительные полосы люминесценции, которые соответствуют люминесценции ионов Tb^{3+} низкой концентрации [8]. По-видимому, это свечение наблюдается от подложки ГГГ, содержащей ионы Tb^{3+} , спектр которой приведен на рис. За, кривая *1*. Возбуждающее излучение лишь частично поглощается ионами Ce³⁺ вследствие их низкой концентрации.

В пленках, выращенных из растворов-расплавов с $C(CeO_2) = 0.2$ мол. %, свечение Tb³⁺ исчезает, поскольку возбуждающее излучение полностью поглощается ионами Се³⁺ из-за их возросшей концентрации (рис. 3б). Интенсивность люминесценции Ce³⁺ в этих пленках возрастает по мере увеличения концентрации Al при возбуждении на 340 нм в 5 раз (рис. 3б) и при возбуждении на 440 нм в 3 раза (рис. 4б). Максимальной интенсивностью люминесценции при возбуждении на 340 и 440 нм обладает пленка $Pb_{0.02}Ce_{0.06}Gd_{2.92}Al_{2.22}Ga_{2.78}O_{12}$ (VI-1) (x = 2.22), coдержащая 2 ат. % Се³⁺. Эксперименты показали, что интенсивность полос люминесценции пленки Pb_{0 02}Ce_{0 06}Gd_{2 92}Al_{2 22}Ga_{2 78}O₁₂ (VI-1) увеличилась при возбуждении на 340 нм в 1.2 раза и на 440 нм в 1.5 раза по сравнению с интенсивностью люминесценции пленки Рb_{0.02}Ce_{0.02}Gd_{2.96}Al_{2.17}Ga_{2.83}O₁₂ (II-1). Этот рост связан с увеличением концентрации Al x от 2.17 до 2.22 и ионов Ce³⁺ от 0.7 до 2 ат. %.

Спектральные зависимости нормализованной оптической плотности пленок представлены на рис. 5. Полоса поглощения на длине волны 276 нм (36230 см⁻¹) соответствует, согласно [7], электронному переходу ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ ионов Pb²⁺(6s²) {Pb²⁺ (6s², ${}^{1}S_{0}$) \rightarrow Pb²⁺ (6s¹ 6p¹, ${}^{3}P_{1}$)}. Две широкие полосы поглощения соответствуют электронному переходу 4 $f({}^2F_{5/2,7/2})$ —5d ионов Се³⁺. Для пленок I-1 и II-1, выросших из растворов-расплавов с $C(Al_2O_3) = 2.0$ и 2.1 мол. %, наблюдается сдвиг полос поглощения уровня 5*d*₁ от 435.8 нм (22950 см⁻¹) до 437 нм (22880 см⁻¹) на 1.2 нм в длинноволновую часть спектра, а уровня $5d_2$ – от 342.5 нм (29200 см⁻¹) до 340.9 нм (29330 см⁻¹) на 1.6 нм в коротковолновую при увеличении концентрации иона Al x от 2.13 до 2.17 (рис. 5а). Пленка III-1, выросшая из раствора-расплава с $C(Al_2O_3) = 2.2$ мол. %, имеет x = 2.06, что значительно ниже концентрации Al в пленках I-1 и II-1, поэтому на спектральной зависимости нормализованной оптической плотности этой пленки полоса поглощения уровня $5d_1$ смещается в коротковолновую часть спектра, а

Рис. 6. Спектры возбуждения люминесценции на длине волны 530 нм эпитаксиальных пленок, выращенных из растворов-расплавов с C (CeO₂) = 0.2% в шихте: IV-1 (*1*), V-1 (*2*), VI-1 (*3*) (см. табл. 2).

уровня 5*d*₂ – в длинноволновую по отношению к полосам поглощения пленок I-1 и II-1.

Увеличение $C(\text{CeO}_2)$ от 0.03 до 0.2 мол. % в шихте приводит к увеличению интенсивности полосы поглощения уровня $5d_1$ ионов Ce^{3+} в пленках в 4 раза. Для пленок IV-1, V-1 и VI-1, выросших из растворов-расплавов с $C(\text{Al}_2\text{O}_3) = 2.0$, 2.1 и 2.2 мол. %, наблюдается сдвиг полос поглощения уровня $5d_1$ в длинноволновую часть спектра с 437.9 нм (22840 см⁻¹) на 438.6 нм (22800 см⁻¹) (сдвиг на 0.7 нм), а уровня $5d_2$ – в коротковолновую с 341.9 нм (29250 см⁻¹) на 340.4 нм (29380 см⁻¹) (сдвиг на 1.5 нм) при увеличении *x* от 2.09 до 2.22 (рис. 56).

Спектры возбуждения люминесценции на длине волны 530 нм для пленок IV-1, V-1 и VI-1 представлены на рис. 6. Спектры были нормированы по интенсивности полосы с максимумом при 450 нм. Наблюдаются две полосы, соответствующие переходам f-d в ионах Ce³⁺.

Различие в поверхности наиболее интенсивно люминесцирующих пленок II-1 и VI-1, выросших из растворов-расплавов с $C(\text{CeO}_2)$ 0.03 и 0.2 мол. % в шихте, представлено на рис. 7. Как видно, поверхность не гладкая и состоит из сростков монокристаллических зерен с длиной ребра не более 6 мкм (рис. 7а) и не более 4 мкм (рис. 7б), ориентированных как по направлению оси [111], так и в плоскости подложки. На рентгеновских дифрактограммах, записанных в режиме $\theta/2\theta$ -сканирования, наблюдались только сильные отражения 444 и 888 от пленки VI-1 и такие же слабые от-

Рис. 7. Фотографии поверхности пленок $Pb_{0.02}Ce_{0.02}Gd_{2.96}Al_{2.17}Ga_{2.83}O_{12}$ (II-1) (a) и $Pb_{0.02}Ce_{0.06}Gd_{2.92}Al_{2.22}Ga_{2.78}O_{12}$ (VI-1) (б).

ражения от подложки, экранированной пленкой (рис. 8). По положению пиков были определены параметры элементарных ячеек подложки *a_s*= = 12.3829 Å и пленки a_f = 12.269 Å (относительное рассогласование параметров решеток ($\Delta a_s - a_f$)/ a_f составляет 0.9%). Значение параметра для подложки соответствует известным значениям параметра для ГГГ по базе данных JCPDS № 76-2290. Присутствие отражений только одного типа указывает на то, что пленки или являются монокристаллическими, или обладают совершенной аксиальной текстурой. Запись асимметричных отражений типа 880 и 12.60, приведенных на рис. 8, свидетельствует о том, что у пленки VI-1 и подложки ГГГ совпадают не только кристаллографические направления [111], но и все другие. Таким образом, пленка VI-1 эпитаксиально наложена на подложку и является монокристаллической.

Рис. 8. Асимметричные отражения 880 и 12.60 при азимутальном сканировании подложки ГГГ и пленки $Pb_{0.02}Ce_{0.06}Gd_{2.92}Al_{2.22}Ga_{2.78}O_{12}$ (VI-1).

ЗАКЛЮЧЕНИЕ

Методом ЖФЭ выращены 25 пленок на подложках ГГГ с ориентацией (111) из раствороврасплавов на основе системы PbO-B₂O₃ с $C(Al_2O_3) = 2.0, 2.1$ и 2.2 мол. % и с $C(CeO_2) = 0.03$ и 0.2 мол. % в шихте. На спектральных зависимостях нормализованной оптической плотности пленок наблюдались две широкие полосы поглощения ионов Ce³⁺, соответствующие электронному переходу 4*f*(²*F*_{5/2, 7/2})-5*d*, и полоса поглощения

примесного иона Pb²⁺ с максимумом на длине волны 276 нм, соответствующая электронному переходу ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$. При увеличении концентрации Al в пленках наблюдался сдвиг полос поглощения уровня 5d₁ ионов Ce³⁺ в длинноволновую часть спектра, а уровня 5d₂ – в коротковолновую. Наиболее интенсивная люминесценция ионов Ce³⁺ наблюдалась в пленке Pb_{0.02}Ce_{0.06}Gd_{2.92}Al_{2.22}Ga_{2.78}O₁₂ с концентрациями Al x = 2.22 и ионов Ce³⁺ 2 ат. %. Работа поддержана Программой развития МГУ имени М.В. Ломоносова, а также при финансовой поддержке программы Mobilitas ESF (грант МТТ83) и Эстонского совета по исследованиям (институциональное финансирование исследований IUT02-26).

СПИСОК ЛИТЕРАТУРЫ

- Vasil'eva N.V., Spassky D.A., Randoshkin I.V., Aleksanyan E.M., Vielhauer S., Sokolov V.O., Plotnichenko V.G., Kolobanov V.N., Khakhalin A.V. Optical Spectroscopy of Ce³⁺ Ions in Gd₃(Al_xGa_{1-x})₅O₁₂ Epitaxial Films // Mater. Res. Bull. 2013. V. 48. Issue 11. P. 4687–4692.
- Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Yu., Fukabori A., Yoshikawa A. 2 Inch Diameter Single Crystal Growth and Scintillation Properties of Ce:Gd₃Al₂Ga₃O₁₂ // J. Crys. Growth. 2012. V. 352. P. 88–90.
- Yoshikaakayuki A., Yanagida T., Kamada K., Sato H., Tsutsumi K., Endo T., Ito Sh. Garnet-Type Crystal for Scintillator and Radiation Detector Using the Same: Patent Application Publication. US 2013/0306874 A1. 2013. Nov. 21.

- Ogieglo Joanna M., Katelnikovas A., Zych, A., Justel Th., Meijerink A. Luminescence and Luminescence Quenching in Gd₃(Ga,Al)₅O₁₂ Scintillators Doped with Ce³⁺// J. Phys. Chem. A. 2013. V. 117. № 12. P. 2479–2484.
- Yanagida T., Kamada K., Fujimoto Yu., Yagi H., Yanagitani T. Comparative Study of Ceramic and Single Crystal Ce:GAGG Scintillator // J. Opt. Mater. 2013. V. 35. P. 2480–2485.
- Iwanowska J., Swiderski L., Szczesniak T., Sibczynski P., Moszynski M., Grodzicka M., Kamada K., Tsutsumi K., Usuki Y., Yanagida T., Yoshikawa A. Performance of Cerium-Doped Gd₃Al₂Ga₃O₁₂ (GAGG:Ce) Scintillator in Gamma-Ray Spectrometry // J. Nucl. Inst. Meth. Phys. Res. A. 2013. V. 712. P. 34–40.
- Васильева Н.В., Рандошкин В.В., Плотниченко В.Г., Пырков Ю.Н., Воронов В.В., Галстян А.М., Сысоев Н.Н. Влияние примесного иона свинца на оптическое поглощение эпитаксиальных пленок Gd₃Ga₅O₁₂:Pb // Неорган. материалы. 2008. V. 44. № 1. С. 82–87.
- Van der Weg W.F., Popma Th. J.A., Vink A.T. Concentration Dependence of UV and Electron-Excited Tb³⁺ Luminescence in Y₃Al₅O₁₂// J. Appl. Phys. 1985. V. 57. P. 5450–5456.