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The obtained results gives a rather complicated picture of the layer-by-layer resolved reorientation of 
magnetization in 57Fe layers under the applied field. The detailed analysis has shown that the collinear alignment 
in each magnetic sublattice and its cophasing rotation does not take place. We have seen that the reorientations 
even at the smallest applied field affected all layers but not just the top or bottom ones. The most specific 
magnetization state under the applied field is the twisted one, the bending details being the function of the applied 
field magnitude. The result should have some impact on the developing of the theory of the interlayer 
aniferromagnetic interaction. From our picture it is clear that in the theory we can not restrict ourselves by the 
interaction between just the adjacent magnetic layers, but should include the whole system simultaneously.

The results are published in   http://arxiv.org/ftp/arxiv/papers/1507/1507.07074.pdf and accepted to PRB
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Configuration of the magnetization M in [Fe/Cr] ML 
Hext applied in plane along one of the easy axes; dashed 
lines mark the hard axes. The only possible two types of 
domains are depicted. The results of the neutron 
reflectivity. (V. Lauter-Pasyuk et al., PRL 89, 167203 (2002))

Fe/Cr(100) superlattices in the external field,
the Landau-Lifshitz equations of motion.
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Noncollinear coupling of iron layers
through native iron oxide spacers
revealed by the nuclear resonant refelctivity
T. Diederich, S. Couet, R. Röhlsberger, PRB 76, 054401 (2007)
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[Si/SiO2](substrate)/Cr(10nm)/[57Fe(3nm)/Cr(1.2nm)]x10/Cr(2.8nm) 
- has been grown using ion beam sputtering at room temperature in a UHV 
chamber with a base pressure of 1 x 10-7 mbar at Indore Centrum (India).
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The measurements have been performed at the station BL09XU 
of SPring-8 at different values of the external field (0 – 1500 Oe).

The nuclear resonance reflectivity (NRR) measurements include the angular 
dependency of the delayed signal + time spectra of reflectivity measured at different 

grazing angles and provide us with an exclusive depth-resolved information about the 
magnetization ordering in multilayers.

The fit of the delayed reflectivity curve should be done simultaneously with the fit of the 
time spectra of reflectivity. For the joint fit  we use the parameters, obtained by the 
Mössbauer spectrum fit, measured beforehand in the Lab, and from the prompt 
reflectivity curve fit. The main purpose of the joint fit of the NRR data is the depth 
distribution of the three chosen Bhf and their effective orientation in plane. We expected 
that when the external field is absent, Bhf antiferromagnetically coupled between 
adjacent 57Fe layers, has no any preferable azimuth direction in the surface plane. 
However, the fit of our data set has been more or less successful with the azimuth 
angles of 20o/-160o (or equivalently  -20o/160o). For the explanation we consider the 
transverse partial coherence of the SR beam which restricts the fully coherent 
averaging of the scattering waves from different domains. With the value of the 
transverse coherence length for ESRF source of ~ 3 µm the estimations give the 
average magnetic domain size ~ 400 µm.

Our program package for data treatment is “REFTIM”
(http://www.esrf.eu/Instrumentation/software/data-analysis/OurSoftware/REFTIM)


