
Figure 1 shows the function ~(Fo) obtained by numerical solution of the heat conduc- 

tion equation (2) with the boundary and initial conditions (3). The numerical solution 

was obtained on a uniform grid with step Ax = 0.01 by means of an implicit difference 
scheme. The integral in Eq. (i0) was calculated by the trapezium method. 
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HYDRODYNAMICS OF FILMS OF SURFACE-ACTIVE SUBSTANCES 

N. G. Taktarov UDC 5 3 2 . 5  

Investigation of the motion of films of surface-active substances, which change the 

surface tension at an interface of two liquids or a liquid and a gas, is of great interest 

for chemical technology [i], and also in many biological processes [2]. These substances 

affect the motion of liquids by changing the boundary conditions on the interfaces, the 

moving film of surface-active substance setting in motion the adjoining layer of liquid 

[1 -3 ]  . 

The experiments of [i] show that sufficiently concentrated films of surface-active 

substances do not have a homogeneous structure but consist of aggregates of condensed 

molecules. The regions of two-dimensional condensation are analogous to ordinary three- 

dimensional drops in multiphase mixture, i.e., they are two-dimensional drops. These 

two-dimensional drops exchange molecules with both the ambient film of the surface-active 

substance as well as with the adjoining liquid. Thus, films of surface-active substances 

should be regarded as multiphase films. 

Single-component and multicomponent single-phase films of surface-active substances 

were investigated in [4-12]. Various models of multicomponent single-phase films were con- 

sidered by Gogosov and Chyong Za Bin.* The hydrodynamics of three-dimensional multiphase 

mixtures was considered in [13-15]. 

In the present paper, we derive equations describing the motion of a film of surface- 

active substance at the interface of two three-dimensional phases. The film is assumed 

to consist of m two-dimensional phases and n components that react chemically with one 

another. The three-dimensional phases are assumed to be single phases and consist of n 

components, which can be adsorbed and desorbed at the interface. The interface exchanges 

matter, momentum, and energy with the three-dimensional phases and is thus an open sys- 

tem. Using the methods of the thermodynamics of nonequilibrium processes, we obtain 

expressions for the two-dimensional stress tensors of all phases the diffusion fluxes 

of the surface-active substance in the two-dimensional phases, the heat fluxes within 

the phases and the heat transfer between the phases, the rates of the surface chemical 

reactions and the two-dimensional phase transitions, the rates of change of the areas 

occupied by the two-dimensional phases on the interface, the rates of adsorption and 

desorption of molecules from the three-dimensional solutions on the surface, the heat 
fluxes from the volume to the surface, the frictional forces of the two-dimensional 

*V. V. Gogosov and Chyong Za Bin, Paper Presented at L. I. Sedov's Seminar. 

Saransko Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 

No. 4, pp. 150-157, July-August, 1982. Original article submitted November 24, 1980. 
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phases with the adjoining liquids, and also the frictional forces between the two-dimen- 

sional phases. The surface variables are defined as in [9], and not as excess variables 

in Gibbs's method [1]+ 

We write the equation of the interface in the form 

xr=xr(ua, I); r~1, 2, 3; a=1, 2 

where x r are curvilinear coordinates used to consider the motion os the three-dimensional 

phases and the interface, and u ~ are two-dimensional coordinates on the interface. We 

choose the coordinates u ~ in such a way as to satisfy the equation [9] 

ax~/Ot=u~n* 

Here, u n is the velocity of the surface in the normal direction, and n r is the 

unit normal to the surface oriented in such a way that the vectors e~=ar/au ~, ez=ar/Ou=,n 
form a right-handed triplet, r being the radius vector. In Eq. (i) and what follows, 

all the partial derivatives with respect to the time of the surface variables are 

taken for fixed coordinates u ~. 

The velocity of the particles of the surface-active substance on the interface 

relative to the system of coordinates x r can be written in the form [9] 

U J = U n ~ n r + u s ~ z ~  r , x ~ r ~ O x r / O u ~ +  ~ n s ~ s r ~ r  

H e r e  a n d  i n  w h a t  f o l l o w s ,  s u m m a t i o n  o v e r  r e p e a t e d  G r e e k  a n d  L a t i n  i n d i c e s  i s  
u n d e r s t o o d .  We s h a l l  u s e  t h e  i n d e x  s t o  d i s t i n g u i s h  t h e  s u r f a c e  v a r i a b l e s  f r o m  t h e  
c o r r e s p o n d i n g  v o l u m e  v a r i a b l e s .  T h e  g e n e r a l  b a l a n c e  e q u a t i o n  f o r  t h e  t w o - d i m e n s i o n a l  
d e n s i t y  o f  s o m e  s u r f a c e  v a r i a b l e  ~ s  h a s  t h e  f o r m  [9 ]  

o++/ot=-v+(%v+++Q+ +) +2K+++r {~+ (v++-+,+)}-{Q%} +F++]+ K=+/+a+~+~+ 
Here, V~ is the covariant derivative, K is the mean curvature of the surface, a ~ 

and b~B are the first (fundamental) and second tensors of the surface, respectively, [16], 

Q~ is the surface flux density vector of ~s' Qr is the three-dimensional flux density 

vector of 4, F s is the source of ~s due to the external surface influences, fs is the 

production of ~s on the surface, v n is the normal component of the velocity of convective 

transport of ~ in the volume, {A) = A 2 -- A 1 is the discontinuity of a three-dimensional 

variable at the interface (we denote the variables referring to the volume phase for 

which the normal n to the interface is exterior and interior by the indices I and 2, 

respectively), and, finally, the variables without index s represent the three-dimensional 

phases. 

We write the continuity equation for component k in the i-th two-dimensional phase, 

the momentum equation for the i-th two-dimensional phase, and the equation representing 

the variation of the total energy of the i-th two-dimensional phase in the form 

OD*ik  

Ot 

m 
<z ~ h h 

V~(p,i~v+ih) + 2Kp ,~v .+~- -e+i{ph(v . - - v . . i )  } -  e~i{p~(v~. - -v . )  } + • + ~ (m,(j~) -- m+(+S)) 

j = l  

0 Oei Ys i  r 

Ot 
V+(p,+v,Vv.++-x++11+++) + 2Kp++v+Vv.,+++,+{td}- +,+{pv~(v+--v.,+)} § 

Z '+ Z + ' 
R, ( j i )  + (m, ( i i ) v , ( j i )  -- m,(.ij)vs(+j)) 

j=l  #=l 

0 - :-+o[ +++ ) + 

( + )  { 2Kp,+v~+,+ U++ + - -  + +++{t+++~vr} - e + i  p(vr+-v~+,i) U + -- e,+{q.}+ 
2 

I n  I n  2 m 2 

+ V + + ) + V . + + , + V m + )  - . + + )  
Z _ _ 3  Z. . . . .a  , a , . , , ~  

(1)  

(2)  

( 3 )  

( 4 )  

(5) 

(6) 
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n tt~ 
L r , r ,  " 
h ~ i  i=i ]=i 

i ~ l  j = i  

m m 2 . .  2 r n  m 

Z Z [ q*(ii)+w*(,i)+ m.(ii) ( U.($*) + ~ )  -- m*(i,) ( U*(~) + ~ )  ] ~ 0. 2 R*(Jt)=-~i~.e*i + Z ~.(ii) 
i=i i=i j=i j=~ 

Z h m,(Si) = tns(~i), 

~)sik~Esi psihl 

n m n 

~ Z Z 

(7)  

o 
Here, Psik is the true density of component k in phase i, Psik is the mean density 

o 

of component k in phase i, Psi and Psi are, respectively, the true density and mean density 
of phase i, Ps is the density of the surface mixture (the surface density is defined as 

the mass of the substance per unit area), ~si is the fraction of the surface occupied 

by phase i, Vsi k is the velocity of component k in phase i, Vsi is the mass-average 

velocity of the i-th two-dimensional phase, Vkn is the normal component of the velocity 
of the k-th three-dimensional component, z~ is the rate of production of component k 

k in phase i per unit time on unit area due to the surface chemical reactions, ms(ji ) i~ 

the rate of production of component k in phase i due to the phase transition j § i, ms(ij ) 
k 

is~ the rate of transition of component k from the i-th to the j-th phase (ms(ij) and 
m~(ii ) are introduced in the same way as the corresponding quantities in three-dimensional 

hydrodynamics [15], tni is the stress on the surface of the i-th two-dimensional phase 

exerted by the three-dimensional phase, H~=~i(a~a~+~ ~) is the partial transfer of the 

internal stresses in phase i, ~i is the coefficient of surface tension of phase i, e ~  

is the nonequilibrium (viscous) part of the stress tensor of phase i, P~(ji) is the 

force with which phase j acts on phase i per unit area, Fs(ji ) is the nonequilibrium 

part of the iorce of interaction of the phases, Vs(ji ) is the velocity of the matter 
in the phase transition j § i, Usi is the internal energy of unit mass of the i-th two- 

2 
dimensional phase, Vsi/2 is the kinetic energy of unit mass of phase i, qn is the density 
of the heat flux from the volume to the surface, qsi is the vector of the heat flux 

density in phase i, qs(ji) is the heat transfer between phases j and i, Us(ji ) is the 
internal energy of the substance making the phase transition j § i, Ws(ji ) is the transi- 
tion of energy from phase j to phase i due to the work of the interaction force ~(ji)' 

and V s = e~V~.  

The t e r m s  i n  t h e  c u r l y  b r a c k e t s  i n  E q s .  ( 4 ) - ( 6 )  c h a r a c t e r i z e  t h e  e x c h a n g e  o f  m a t -  
t e r ,  momentum, and e n e r g y  b e t w e e n  t h e  i n t e r f a c e  and t h e  t h r e e - d i m e n s i o n a l  p h a s e s ;  t h e  
t e r m s  c o n t a i n i n g  t h e  c u r v a t u r e  o f  t h e  s u r f a c e  a r e  a s s o c i a t e d  w i t h  t h e  i n f l u e n c e  o f  i t s  
shape on the variation of the surface variables. The factors Esi in front of the curly 
brackets indicate that the exchange of mass, momentum, and energy between the i-th sur- 

face phase and the volume does not take place on the entire interface but on the frac- 

tion Esi of it occupied by phase i. Equations (7) are a consequence of the conservation 
laws for mass, momentum, and energy in the chemical reactions, the phase transition, and 

the energy transfer between the surface phases. 

Introducing the vector 1~k=p~ik(Vsr of the diffusion flux density of component 
k relative to phase i, we can write the continuity equation (4) as 

m 

c* ~ k h 
Op,~ _ Va(ps~hv.#)-- Vj.ih+2Kp.ihv~si--e,~{p~(vn--vn.i)}-- ~{pA(vk~--V~)}+ • + ~  (rn,(~i)--ms(ij)) 

at 

Summing E q s .  (8)  o v e r  k ,  we o b t a i n  t h e  c o n t i n u i t y  e q u a t i o n  f o r  p h a s e  i :  

(8) 

V~(p,lv,~ ~) + 2Kp~iv~,~--s,i {p (v~--vna~)} + ~ (m~(~i)--m,(~j)) 
at 

j = i  

C o m p a r i n g  E q s .  ( 5 ) ,  ( 6 ) ,  and (8)  w i t h  Eq.  ( 3 ) ,  we can  e s t a b l i s h  t h e  f o r m  o f  t h e  

(9)  
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functions Qs, Fs' and fs" 

The p a r t i c u l a r i z a t i o n  o f  t h e  f o r m  o f  t h e  f u n c t i o n s  Q~, F s ,  a n d  f s  i s  t h e  a s s u m p t i o n  
made when a model of the film of surface-active substance is constructed. 

From Eqs. (5) and (9) we obtain an equation for the variation of the kinetic 

e n e r g y  o f  p h a s e  i :  

(:- ) 0 p~iv,i z V~ p~iv~v~  z + Kp,iv.iZv~,i + - -  ~v.~Z{p(v~--v,,~)} - 
Ot 2 2 

m 

T U a i 2  E (?ns(ji)--tna(iJ))q ~.iU.ir(trni}--Sliu.ir{pl;r(Un--~)n.i)}-b 
g=l 

m m rn 

Usic~V~l~ia~+]~ic~bc~Ynsi + )q-Yrsi 77~(jl)D*(ii)- m~(ij)Ya(ij) 
j--I j--i j=i 

S u b t r a c t i n g  E q .  ( 1 0 )  f r o m  E q .  ( 6 ) ,  we f i n d  t h e  e q u a t i o n  f o r  t h e  h e a t  s u p p l y  f o r  
p h a s e  i : 

0 
- -  p . iU,~=- Vf~ (p.~U.iv,i a) + 2Kp.iU.ivn.i + esi{trni (v~--v.ir) } - 
at 

m m 

{ [ ]} 2 2 (v-vsi)2  e.~{q~}+ Hi~V~vsi~-V~q.. ~ + q,(~) + (w~(~) -v~R. (~ i ) ) -  IIi~b~v~.~ + e., p ( v ~ - v ~ )  U + 2 

m m 

EF~'(Jl) [ (V'(ji)--Y$i)2 U'(ji) l - - E  ?n~(iJ)[ (v'(iJ)-- v'i)22 ~ U'(iJ) ] 

j=l j~l 
We now p a r t i c u l a r i z e  t h e  m o d e l  o f  t h e  f i l m  b y  m a k i n g  t h e  a s s u m p t i o n  ~ , , (~ )=R~)v~ ,~ .  

A s s u m i n g  t h a t  e a c h  t w o - d i m e n s i o n a l  p h a s e  i s  l o c a l l y  i n  e q u i l i b r i u m ,  a n d  t h a t  t h e  
i n t e r n a l  e n e r g y  U s i  o f  p h a s e  i d e p e n d s  on  t h e  e n t r o p y  S s i  o f  u n i t  m a s s  o f  p h a s e  i ,  t h e  o 
surface mass concentration Csi k = ~sik/Psi , and the true density Psi of phase i and does 
n o t  d e p e n d  e x p l i c i t l y  o n  t h e  s h a p e  o f  t h e  s u r f a c e ,  t h e  t w o - d i m e n s i o n a l  d e f o r m a t i o n s ,  
etc., we postulate the Gibbs identity for phase i in the form 

(10) 

(11) 

dU, i=T~i dSsi + ~ ~sih d c . i h + a i d - -  
~ai ~ 

H e r e .  T s i  i s  t h e  t e m p e r a t u r e  o f  p h a s e  i a n d  ~ s i k  i s  t h e  c h e m i c a l  p o t e n t i a l  o f  
u n i t  m a s s  o f  c o m p o n e n t  k i n  p h a s e  i A l i  t h e  t w o  d i m e n s i o n a l  p h a s e s  a r e  a s s u m e d  t o  b e  

c o m p r e s s i b l e  

T h e  G i b b s  i d e n t i t y  ( ! 2 )  c a n  a l s o  b e  w r i t t e n  i n  t h e  f o r m  

(12) 

n 
dp, i U,i=Ts~ dp,i S,i + E ~*i~ dp,~+cz~ de,i 

We d e f i n e  t h e  e n t r o p y  S s o f  u n i t  m a s s  o f  t h e  s u r f a c e  m i x t u r e  a s  f o l l o w s :  

( 1 3 )  

m 

p~S~ = E ps~S,~ 

Using the continuity and heat supply equations, we obtain from Eqs. (13) and (14) 

m ~n n ~ fn 

o [2 (  2 --at p , S , = - %  P'~S'w'P + ~ ) - r.~ - {e.d,.S} + 

2K v.,r p.iS.i -- E ~ dt " T,i T" 

m n 

2 {e.i'[n~. VT~V'i ) - - {~(  qn--21hn~h)}+ 
i --I k~l 

(14) 
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m E~ m 

Z gs~i T~ + Z  qslaVa 
i=i  i=t 

m n ~n %e 

i = 1  k~l i = i  

m n - i  ~n - i  ~,n m- I  m 
1 ~ ~ ~,~-~,~ ~-~ t 1 

m n--~ ~ ~sik--~sin m-- i  m n 

i = i  h=i i=l  j=l  k~i  

X a (v,(~)--v.~) z (v.(~O-v,~) 2 U.(~t) U,(i~) ~ .~  ~.,,m 
s(~i) . . . .  + ~ --. -- + 

2T,i 2T.~ T,~ T,,n Tsi T,m 
( 1 5 )  

�9 . ~ t ~ + y n ,  e ~ = ~ / e ( V ~ v ~ + V ~ v ~ ) ,  E ~ : e , , ~ - b ~ v ~ ,  E ~ : E i ~ a  ~ 

E ~ a ~ E ~ - t / 2 E ~ a ~ ,  ~=t/2~a~aa~,  ~i =~--~a a~ 

Here, w is the enthalpy of the three-dimensional phases, ~=~ is the viscous stress 

on the surface of phase i, and X~(ij ) are obtained from X~(ji ) by replacing Vs(ji ) and 

Us(ji ) by Vs(ij) and Us(ij), respectively. 

In deriving Eq. (15), we have used the relation 

n 

Z Ps~h d~s~= - p ~ S , i  dTs i -es i  dc~i 

k=t 

w h i c h  i s  t h e  s u r f a c e  a n a l o g  o f  t h e  u s u a l  G i b b s - - D u h e m  e q u a t i o n  [ 1 7 ] .  

We d e f i n e  t h e  e n t r o p y  p r o d u c t i o n  c~ s on  t h e  i n t e r f a c e  a s  f o l l o w s :  

m ~n �9 m 

+ s 
?n n--i m sn n--i rn--i m n 

. Ta~ Ts~ dt Tjt - • + " (ms(j~)Xs(5~)--ms(~j)X~(ij)) + 
i~i h~i i~i i~i k='i i=i j~i h=( 

m m m 

" o : i ~ +  q.ui)  -- [ e . i (qn+wJ~)]  
dt T, i  T ,~  T,i  T + s,iX~n~ T,i  J + 

m m--I  m 

T,i T,m 
i=I 4~I j=i 

m - - i  ~ m f t  

r r, 2r,{ [0.,. ,v_.,,.]} Fns(ji) Tam + esiJikn T,~ T 2T,~ 
i = I  j = l  i = t  k = i  

"$ni~(nTnni-~nvi~ V~IIUn~-Vx ~ Vsi~nUsni~-V~si~ Fs(ji)=nFns(jl)+e~F~zs(jo 

We shall attribute the remaining terms on the right-hand side of Eq. (15) to the 
reversible flow of entropy to the interface. 

The expression (16) for the entropy production is a sum of binary products of 

thermodynamic fluxes and the conjugate thermodynamic forces. 

The transport coefficients Lij in the linear expressions for the thermodynamic 
fluxes are related through the forces by the Onsager--Casimir reciprocity relations [18] 

( 1 6 )  

L~j~e~ejLji 

where el, ej = 1 if the thermodynamic forces with the numbers i and j belong to type 

(i.e., are even functions of the velocities of the microscopic particles), and ei, ej = 

--I if the forces are of type ~ (i.e., they are odd functions of the velocities). 

Because they are cumbersome, we do not here give the linear expressions for fluxes 
in terms of the forces. Below, we list (write Out) the thermodynamic fluxes and forces. 

The surface thermodynamic fluxes are 
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m 

h h Z --'digsl *c~ 
e~inl, d.~gzddt, • rnsu~), ms(i j), qs(Ji)--GSi dt qs~ a, lsi a, es i~i  

m n~ 

F~(~i), Fns(j';), e~i(qn~+w~JnC), gsi ih~;,  gsi~nni, 8~iTnli 

j ~ i  j ~ l  

The surface thermodynamic forces are 

Ei am- -a i  ~, in--~sih t; k t t J. 
- - ~  , , X s u i b  --Xs(ij),  , V a - -  
Tsi T~m T~i Tsi Tsm Tsi 

~smn-- ~sih Eia~ Vnsm-- l)nsi V~m a - -  Vsi a 

Tsi Tsi Tsm 
V~ 

Ts~ 

1 ~ik  ~ (v~-v,i)  = v ~ - ~ , ~  v , ' - v , , i  

T~ T~i ' T~ T.~ 2T~ T~ T~ 

Here, ~ = 1 for the first three-dimensional phase and ~ = 2 for the second. 

In the surface thermodynamic forces (18), the first, ninth, tenth, llth, 14th, and 

15th are of type # and the remaining of type ~. 

We shall assume that the interface and the three-dimensional phases are isotropic; 

then in accordance with Curie's principle [18], the thermodynamic fluxes will depend on 

the thermodynamic forces of the same tensor dimension. Isotropy of the interface is 

understood in the sense that the physical properties of the interface do not depend on 

the direction in the tangential plane. Curie's principle in the two-dimensional case 

takes the form that the linear expressions for the fluxes in terms of the forces can 

contain only quantities having the same transformation properties with respect to an 

arbitrary orthogonal transformation of the surface coordinate system. Further, in 

the two-dimensional case the fluxes depend on the forces and the fundamental tensor 

as# of the surface. 

We now discuss the thermodynamic fluxes (17) and the forces (18). The quantities 

es~m, which depend on the scalar forces (18), and e,~n~ , which depend on the tensor forces 

(18), characterize the viscous two-dimensional stresses in phase i; the quantities • 

k h 

msU~), m,c~Jl, which characterize the production rate of component k of phase i due to the 

chemical reactions and the two-dimensional phase transitions, depend on all the scalar 

forces (18); the quantities qs(ji), which characterize the heat transfer between the 

two-dimensional phases, also depend on all the scalar forces. The rate of change of 

the area occupied by phase i, dm~si/dt , also depends only on the scalar forces. The 

~ depend on all the vector surface heat flux vectors qsi and diffusion flux vectors Isi k 

thermodynamic forces (18). The quantities Esi(qn + WJni) characterize the irreversible 

heat flux from the volume to the surface, and msiJikn characterize the mass transfer 

between the interface and the volume. The quantities e ~  and e~T~T~ characterize the 

frictional forces in the three-dimensional phases acting on the interface in the 

normal and tangential directions, respectively. Finally, Fns(ji) and Fs(ji ) characterize 

the force of the interaction between the two-dimensional phases due to their being in 

disequilibrium. 

In the case of an arbitrary nonisotropic interface, the dependences of the fluxes 

on the forces become much more complicated, and each flux component will depend on all 

components of the thermodynamic forces. 

The above equations of motion of films of surface-active substances must be solved 

simultaneously with the equations of motion of the three-dimensional phases, which have 

the usual form [18]. 

Under some special assumptions, the two-dimensional equations simplify appreciably 

and take the form of the boundary conditions on a liquid interface that are well known 

in hydrodynamics. 

(17) 

(18) 
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We note finally that comparison of the theory developed here with experiment [I] 
is at present impossible due to the absence of quantitative experimental results. How- 
ever, the equations derived here show what quantities and connections between them 
should be investigated in an experiment. We note also that it is of interest to derive 
the equations of motion of films of surface-active substances with concentrated incom- 
pressible islands of condensation of molecules. 
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