Figure 1 shows the function ¥ (Fo) obtained by numerical solution of the heat conduc-
tion equation (2) with the boundary and initial conditions (3). The numerical solution
was obtained on a uniform grid with step Ax = 0.01 by means of an implicit difference
scheme. The integral in Eq. (10) was calculated by the trapezium method.
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HYDRODYNAMICS OF FILMS OF SURFACE-ACTIVE SUBSTANCES

N. G. Taktarov UDC 532.5

Investigation of the motion of films of surface-active substances, which change the
surface tension at an interface of two liquids or a liguid and a gas, is of great interest
for chemical technology [1], and also in many biological processes [2]. These substances
affect the motion of liquids by changing the boundary conditions on the interfaces, the
moving film of surface-active substance setting in motion the adjoining layer of liquid
[1-3].

The experiments of [1] show that sufficiently concentrated films of surface-active
substances do not have a homogeneous structure but consist of aggregates of condensed
molecules. The regions of two-dimensional condensation are analogous to ordinary three~
dimensional drops in multiphase mixture, i.e., they are two-dimensional drops. These
two-dimensional drops exchange molecules with both the ambient film of the surface-active
substance as well as with the adjoining liquid. Thus, films of surface~active substances
should be regarded as multiphase films.

Single-component and multicomponent single-phase films of surface-active substances
were investigated in [4-12]. Various models of multicomponent single-phase films were con-
sidered by Gogosov and Chyong Za Bin.* The hydrodynamics of three-dimensional multiphase
mixtures was considered in [13-15].

In the present paper, we derive equations describing the motion of a film of surface-
active substance at the interface of two three-dimensional phases. The film is assumed
to consist of m two-dimensional phases and n components that react chemically with one
another. The three-dimensional phases are assumed to be single phases and consist of n
components, which can be adsorbed and desorbed at the interface. The interface exchanges
matter, momentum, and energy with the three-dimensional phases and is thus an open sys-
tem. TUsing the methods of the thermodynamics of nonequilibrium processes, we obtain
expressions for the two-dimensional stress tensors of all phases the diffusion fluxes
of the surface-active substance in the two-dimensional phases, the heat fluxes within
the phases and the heat transfer between the phases, the rates of the surface chemical
reactions and the two-dimensional phase transitions, the rates of change of the areas
occupied by the two-dimensional phases on the interface, the rates of adsorption and
desorption of molecules from the three-dimensional solutions on the surface, the heat
fluxes from the volume to the surface, the frictional forces of the two-dimensional

*V. v, Gogosov and Chyong Za Bin, Paper Presented at L. I. Sedov’s Seminar.

Saransk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza,
No. 4, pp. 150-157, July-August, 1982. Original article submitted November 24, 1980.
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phases with the adjoining liquids, and also the frictional forces between the two-dimen-
sional phases. The surface variables are defined as in [9], and not as excess variables
in Gibbs’s method [1].

We write the equation of the interface in the form

=z (u% t); r=1, 2, 3; a=1, 2

where x¥ are curvilinear coordinates used to consider the motion of the three-dimensional
phases and the interface, and u® are two-dimensional coordinates on the interface. We
choose the coordinates u® in such a way as to satisfy the equation [9]

Az [dt=un,n" (1

Here, u, is the velocity of the surface in the normal direction, and nT is the
unit normal to the surface oriented in such a way that the vectors e;=0dr/du!, e,=0dr/du*n
form a right-handed triplet, r being the radius vector. 1In Eq. (1) and what follows,
all the partial derivatives with respect to the time of the surface variables are

taken for fixed coordinates u”.

The velocity of the particles of the surface-active substance on the interface
relative to the system of coordinates x' can be written in the form [9]

U =Ups T AU, 2o =02"/0u%, Ups=v"R, (2)

Here and in what follows, summation over repeated Greek and Latin indices is
understood. We shall use the index s to distinguish the surface variables from the
corresponding volume variables. The general balance equation for the two-dimensional
density of some surface variable g has the form [9]

s/ 9= Vel Psv:%+0:%) +2Kmatps— {1 (vp—ua) )= (@70} +Fs+fo K=1/2a% by 3

Here, V, is the covariant derivative, K is the mean curvature of the surface,
and b,, are the first (fundamental). and second tensors of the surface, respectively, [16],
Qg is the surface flux density vector of ws’ QFf is the three-dimensional flux density
vector of 1y, Fg is the source of Yy due to the external surface influences, fg is the
production of i}, on the surface, v, is the normal component of the velocity of convective
transport of Yy in the volume, {A} = Ay — Ay is the discontinuity of a three-dimensional
variable at the interface (we denote the variables referring to the volume phase for
which the normal n to the interface is exterior and interior by the indices 1 and 2,
respectively), and, finally, the variables without index s represent the three-dimensional
phases.
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We write the continuity equation for component k in the i-th two-dimensional phase,
the momentum equation for the i-th two-dimensional phasc, and the equation representing
the variation of the total energy of the i-th two-dimensional phase in the form

Opsin
ot

m
A A
= - Voc(plihvfih) + 2K04irVnsi—€si {Or (Vn=Unsi) } = Esi {0n{Vkn—Vn) } + Kain + Z (magisy — Mmeisy) (4)
Jj=1
0PsiVai"

P Vo (paiVai’ Vaif 26 T1%8) + 2K 4iVei" Vngi+ €ai {tni™} — €2 {pV" (Vn—Vnei) } +

m m v )
T T r
E Ry5y + E (magieyVa(siy = Mr(i)Va(is)) (5)

=1 =1
El v 1_z Dei?
'5— Pai ( Uy + ";—‘) =—Vﬁ|: Paivn'ﬁ ( Ui + '_‘.21“> - I:*veia+ q;iﬂ] -+
1

2 2

Ui v
2K DsiVnsi (Un' + ;1 ) + £gi{tni"vs} — En‘{ 0 (Vn—Vnai) ( U+ ‘2—')} — eai {qn} +

Vs(ii) Vs(i4)
. Way(ji) +Z Ga(iiy + Z ms(ji)( Usiity + 2 ) "Z ms(ii)( Usasy + B ) (6)

m m m 2 m 2
j=1 j=1 Fe=1 je=1
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m m
E E ms(ﬂ)"ms(w))"‘
m

E .(Jl)+ms(;z)Us(n)"ma(u)vn(z:))—
i=1 j=1
2 2

m m m

i Vs(ji) Va(ij)
E E [qc(ii)+wuii)+m,(:ii) ( Us(yiy + 2 ) — Mg(ij) ( Usisy + 2 )] =0, Z Rejiy=—0i Vatai + 2 Fagiiy
i=1 j=1 J=1

j==1

m

n n
k Rk 1
Me(jiy = E Ma(iiy  Me(ij) = E Ma(i5y, E gi=1, vy =
h=1 h=1 Pai Py

i=1

n m
Qsia=EsiPaiks 0si=EsiPsi» 0si° = E O%in,  Pa= Z Psi
k=1 i=1

Here, p;1k is the true density of component k in phase i, pgy is the mean density
of component k in phase i, pSl
of phase i, pg is the den91ty of the surface mixture (the surface density is defined as
the mass of the substance per unit area), ey is the fraction of the surface occupied
by phase i, Vgii is the velocity of component k in phase i, V4; is the mass-average
velocity of the i-th two-dimensional phase, v, is the normal component of the velocity
of the k-th three-dimensional component, %s;»x 1s the rate of production of component k
in phase i per unit time on unit area due to the surface chemical reactions, Mg (1) iﬁ
the rate of production of component k in phase i due to the phase transition j - i,
is the rate of transition of component k from the i-th to the j-th phase (ms(1 y an

g(Jl) are 1ntroduced in the same way as the corresponding quantities in three dimensional
hydrodynamics [15], t_ ; is the stress on the surface of the i-th two-dimensional phase
exerted by the three-dimensional phase, H?ﬁ=8g«maw+nﬁﬂ is the partial transfer of the
internal stresses in phase i, Oy is the coefficient of surface tension of phase i, e.m®f
is the nonequilibrium (viscous) part of the stress tensor of phase i, Rs(ji) is the

force with which phase j acts on phase i per unit area, Fs(ji) is the nonequilibrium

part of the iorce of interaction of the phases, Vs(ji) is the velocity of the matter

in the phase transition j - i, Ug; is the internal energy of unit mass of the i-th two-
dimensional phase, vg;/2 is the kinetic energy of un1t mass of phase i, q, is the density
of the heat flux from the volume to the surface, qSl is the vector of the heat flux
density in phase i, ds(ji) is the heat transfer between phases j and i, Us('i) is the
internal energy of the substance making the phase transition j - 1, wg(ji) 1s the transi-
tion of energy from phase j to phase i due to the work of the interaction force RS(Jl)’
and Vg = e V

Bs (i)

The terms in the curly brackets in Eqs. (4)-(6) characterize the exchange of mat-
ter, momentum, and energy between the interface and the three-dimensional phases; the
terms containing the curvature of the surface are associated with the influence of its
shape on the variation of the surface variables. The factors €53 in front of the curly
brackets indicate that the exchange of mass, momentum, and energy between the i-th sur-
face phase and the volume does not take place on the entire interface but on the frac-
tion egy of it occupied by phase i. Equations (7) are a consequence of the conservation
laws for mass, momentum, and energy in the chemical reactions, the phase transition, and
the energy transfer between the surface phases.

Introducing the vector 1$h=pnk@§k—ui) of the diffusion flux density of component
k relative to phase i, we can write the continuity equation (4) as

6psik
ot

=1

Summing Eqs. (8) over k, we obtain the continuity equation for phase i:

m

5@:1‘
ot

i=1

Comparing Eqs. (5), (6), and (8) with Eq. (3), we can establish the form of the
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and pgj are, respectively, the true density and mean density

7)

A
= — Va(psinvs:®) — Valao;h+2Kpsihvnsi~8ai{ph(Un—Umi)}— €5i {Pr (Vrn—Vn) } + %sin +Z (m;(ji)_msh(ij)) (8)

= = Vu.(PsiVs'ia)-i' ZKpsiVnsi-‘B:i{p(vn"vnu’)}'i'z (ms(ji)_ma(ii)) (9



functions Qg, Fs, and fg.

The particularization of the form of the functions Qg, Fg,
made when a model of the film of surface-active substance is constructed.

and fg is the assumption

From Egs. (5) and (9) we obtain an equation for the variation of the kinetic

energy of phase i:

g psivziz 1
o 2 =-— Vg (? PsiUsi“Usiz) + KpgiUsi20ngi + £s5iUai?{P (Vn—Vnsi) } —
1 m

3 Vst 2 (Mms(iiy—Maijy) + CaiVei {trni}— Es:iVai” {OVr (Vn—Vnsi) } +

i=1
m

m m
T T
Vpio VeIl P +T1;%Pboptns: + E Vsirth(ji)+Ursi( E ms(ji)vs(ji)_z Me(i5)Vs(if) (10)
j=1

j=1 i=1

Subtracting Eq. (10) from Eq. (6), we find the equation for the heat supply for

phase i:
7
737' P:iU:i = st (psi Uxi Usia) + 2Kpsz‘Uu' Unsi+ Esi {trni (Vr_ Un'r) } -

(v—vsi)? i ™
8.1‘{ p(Un"Unsi) [ U+ -———2—']} - 31i{§n}+ Hilxﬁvavuiﬁ"VaQu;“ + Z Gs(5i) + Z (ws(ji)—vrxiRsr(ji))— Hiaﬁbaﬁvnsi +
i=1

j=1

- (Vag5i)=Vse)? = (Vagis)— Vai) ®
i i)™ Vi
Zm.(m [ 3 + U:(ji)] —ZI ms(ij)[ )2 + U.(ij)] (11)

=1 j=t
We now particularize the model of the film by making the assumption w”ﬁ,=RJﬁ)w”.
and that the

Assuming that each two-dimensional phase is locally in equilibrium,

internal energy Ugy of phase i depends on the entropy SSi of unit mass of phase i, the
= pgik/Pgi» and the true density p;i of phase i and does

surface mass concentration cgiy =
not depend explicitly on the shape of the surface, the two-dimensional deformations,

etc., we postulate the Gibbs identity for phase i in the form

B

dU.n':Txi dSsi ’1"'2 gsih dcn'h'*"ocid

h=1

(123

psio

Here, Tgyi is the temperature of phase i, and £, 4 is the chemical potential of
unit mass of component k in phase i. All the two-dimensional phases are assumed to be
compressible.

The Gibbs identity (12) can also be written in the form

(3

dpsi Ugi=0T5; dpgi Ssi + Z Eain dpsin+0i degi (13)
X

==1
We define the entropy Sg5 of unit mass of the surface mixture as follows:

m

0S5 = Z 02iSes (14)

i=1
Using the continuity and heat supply equations, we obtain from Eqs. (13} and (14)

) ._i i Efi]i?i] ‘i {eaidniS} +
i=1 Rt

m

7} qi“
6—t psSa:_sz [ Z (pu‘Su'vn'a + T

=i

1 1

m m m
o diBsi
wai0siSsi = - . [e,-<qn+w1n->1}+
ZKZ”“)S To: di E{(T T) ‘ '
i=1

i=1

Z‘{Gﬁ‘l?m v]—:ﬁ }—{;—( qn—ilmEh)}+

i=1

i=1
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e Esin—Esin A R
Z Z Hair + Z Z Z (ma(:/z)Xs(yz)“ml(w)Xs(zJ))
i=1 k=1 i=1 j=1 k=1
Xty = Wﬂﬁr_ﬂﬂz_(WUU—Wm)ﬁ_Uuﬁ)__UMﬁﬁ_gﬁh +§:ﬁ_ (15)
2Txi 2Tsm Tsi Txm Tsi Tlm

Ji}(vl:pk(vkn_vnsi), ]nizp(yn_vnsi), Jhn':p.h(lihn"l),,)'u dz’Bsi/df=683i/(7t+lisiavcﬁsia w:U+P/P
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Here, w is the enthalpy of the three-dimensional phases, 7, is the viscous stress
on the surface of phase i, and Xs(ij) are obtained from X ) by replacing v and

) s(ji
Us(ji) by vg(ij) and Us(ij)’ respectively.

s(ji)

In deriving Eq. (15), we have used the relation

n

Zpsik dEsin=—PsiSsi AT 4i—25; daig

R=1

which is the surface analog of the usual Gibbs—Duhem equation [17].

We define the entropy production o4 on the interface as follows:

m
E; sap Emﬂ
O = E ' €405 + E €517 E qu“Va
Tsi

i=1 j==q =1

gszk—‘gcmn = Oli—Um OmEai " Euh_glin
2 Z ]szhv - T —Z Z Hgik + Z Z Z (ms(]1)XJ(JI)_'ms(’LJ)Xs(W))+
. gt sm

=1 k=1 i==1 i=1 k=1 i=1 j=i h={
‘m—i

m m
di8ei + 1 1 1 1 ] Un—"Vsni
- % i1 —_——) - E —— — ; ni 2 f i AR
2 ( 7 2 Qs(j )) ( T,,; T‘m ) {( Tu T ) b (Qn-f'w 1)] } { 84iTnni T.: } +
iwai j==1 i=1 i=1
Vi—Vaigi i
E {Es‘i‘[nn A } E E F‘(Ji) Vasi— Vasm .
=1

i1 j=t

T3 oo 22 51 9 e[ 22 E‘.‘f —— I}

i=1 je==1 i=1 k=t

T =0T nnitTge, V=0,V Ver=MentVes,  Fogoy=0F g5 Te%F i (16)

We shall attribute the remaining terms on the right-hand side of Eq. (15) to the
reversible flow of entropy to the interface.

The expression (16) for the entropy production is a sum of binary products of
thermodynamic fluxes and the conjugate thermodynamic forces.

The transport coefficients L;s; in the linear expressions for the thermodynamic
fluxes are related through the forces by the Onsager—Casimir reciprocity relations [18]

Lij= eiejLﬁ

where e, ej = 1 if the thermodynamic forces with the numbers i and j belong to type o
\i.e., are even functions of the velocities of the microscopic particles), and ej, ej =
—1 if the forces are of type B (i.e., they are odd functions of the velocities).

Because they are cumbersome, we do not here give the linear expressions for fluxes
in terms of the forces. Below, we list (write out) the thermodynamic fluxes and forces.

The surface thermodynamic fluxes are
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The surface thermodynamic forces are

E; Clm—0Cls Esin—Esin B A 1 1 1
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Here, v = 1 for the first three~dimensional phase and v = 2 for the second.

In the surface thermodynamic forces (18), the first, ninth, tenth, 11th, 14th, and
15th are of type B and the remaining of type o.

We shall assume that the interface and the three-dimensional phases are isotropic;
then in accordance with Curie’s principle [18], the thermodynamic fluxes will depend on
the thermodynamic forces of the same tensor dimension. Isotropy of the interface is
understood in the sense that the physical properties of the interface do not depend on
the direction in the tangential plane. Curie’s principle in the two-dimensional case
takes the form that the linear expressions for the fluxes in terms of the forces can
contain only quantities having the same transformation properties with respect to an
arbitrary orthogonal transformation of the surface coordinate system. Further, in
the two-dimensional case the fluxes depend on the forces and the fundamental tensor
ang of the surface.

We now discuss the thermodynamic fluxes (17) and the forces (18). The guantities
8
e«Tli, which depend on the scalar forces (18), and ennja, which depend on the tensor forces

(18), characterize the viscous two-dimensional stresses in phase i; the quantities xsin

k R
ms(jiy Ms(ijy Which characterize the production rate of component k of phase i due to the

chemical reactions and the two-dimensional phase transitions, depend on all the scalar
forces (18); the quantities ds(ji) - which characterize the heat transfer between the
two-dimensional phases, also depend on all the scalar forces. The rate of change of
the area occupied by phase i, dyeg;/dt, also depends only on the scalar forces. The
surface heat flux vectors qg; and diffusion flux vectors ISlk depend on all the vector
thermodynamic forces (18). The quantities eg45(qy + wdpy) characterize the irreversible
heat flux from the volume to the surface, and EsiJikn characterize the mass transfer
between the interface and the volume. The quantities &sTnu and &siTau characterize the
frictional forces in the three-dimensional phases acting on the interface in the

normal and tangential directions, respectively. Finally, Fns(ji) and Fs(ji) characterize
the force of the interaction between the two-dimensional phases due to their being in
disequilibrium.

In the case of an arbitrary nonisotropic interface, the dependences of the fluxes
on the forces become much more complicated, and each flux component will depend on all
components of the thermodynamic forces.

The above equations of motion of films of surface-active substances must be solved
simultaneously with the equations of motion of the three-dimensional phases, which have
the usual form [18].

Under some special assumptions, the two-dimensional equations simplify appreciably
and take the form of the boundary conditions on a liquid interface that are well known
in hydrodynamics.
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We note finally that comparison of the theory developed here with experiment [1]

is at present impossible due to the absence of quantitative experimental results. How-
ever, the equations derived here show what gquantities and connections between then
should be investigated in an experiment. We note also that it is of interest to derive

the

equations of motion of films of surface-active substances with concentrated incom-

pressible islands of condensation of molecules.

o
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