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Abstract

In this paper, we present a new matrix approach for the analysis of subdivision schemes whose non-
stationarity is due to linear dependency on parameters whose values vary in a compact set. Indeed, we
show how to check the convergence in Cℓ(Rs) and determine the Hölder regularity of such level and pa-
rameter dependent schemes efficiently via the joint spectral radius approach. The efficiency of this method
and the important role of the parameter dependency are demonstrated on several examples of subdivision
schemes whose properties improve the properties of the corresponding stationary schemes. Moreover, we
derive necessary criteria for a function to be generated by some level dependent scheme and, thus, expose
the limitations of such schemes.

Keywords: Level dependent (non-stationary) subdivision schemes, tension parameter, sum rules, Hölder
regularity, joint spectral radius.

1. Introduction

We analyze convergence and Hölder regularity of multivariate level dependent (non-stationary) subdivi-
sion schemes whose masks depend linearly on one or several parameters. For this type of schemes, which
include well-known schemes with tension parameters [1, 2, 15, 17, 37, 38], the theoretical results from [8]
are applicable, but not always efficient. Indeed, if the level dependent parameters vary in some compact
set, then the set of the so-called limit points (see [8]) of the corresponding sequence of non-stationary masks
exists, but cannot be determined explicitly. This hinders the regularity analysis of such schemes. Thus,
we present a different perspective on the results in [8] and derive a new general method for convergence
and regularity analysis of such level and parameter dependent schemes. The practical efficiency of this new
method is illustrated on several examples. We also derive necessary criteria that allow us to describe the
class of functions that can be generated by non-stationary subdivision schemes. Indeed, we show how to
characterize such functions by the special property of the zeros of their Fourier transforms.

Subdivision schemes are iterative algorithms for generating curves and surfaces from given control points
of a mesh. They are easy to implement and intuitive in use. These and other nice mathematical properties
of subdivision schemes motivate their popularity in applications, i.e. in modelling of freeform curves and
surfaces, approximation and interpolation of functions, computer animation, signal and image processing
etc. Non-stationary subdivision schemes extend the variety of different shapes generated by stationary
subdivision. Indeed, the level dependency enables to generate new classes of functions such as exponential
polynomials, exponential B-splines, etc. This gives a new impulse to development of subdivision schemes
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and enlarges the scope of their applications, e.g. in biological imaging [23, 43], geometric design [40, 42] or
isogeometric analysis [3, 12].

The main challenges in the analysis of any subdivision scheme are its convergence (in various function
spaces), the regularity of its limit functions and its generation and reproduction properties. The important
role of the matrix approach for regularity analysis of stationary subdivision schemes is well-known. It allows
to reduces the analysis to the computation or estimation of the joint spectral radius of the finite set of square
matrices derived from the subdivision mask. Recent advances in the joint spectral radius computation [30, 39]
makes the matrix approach very precise and efficient. In the non-stationary setting, however, this approach
has never been applied because of the several natural obstacles. First of all, the matrix products that
emerge in the study of non-stationary schemes have a different form than those usually analyzed by the
joint spectral radius techniques. Secondly, the masks of non-stationary schemes do not necessarily satisfy
sum rules, which destroys the relation between the convergence of the scheme and spectral properties of its
transition matrices. All those difficulties were put aside by the results in [8], where the matrix approach
was extended to general non-stationary setting.

In this paper, in Section 3, we make the next step and consider level and parameter dependent subdivision
schemes whose masks include tension parameters, used to control the properties of the subdivision limit.
Mostly, the tension parameters are level dependent and influence the asymptotic behavior of the scheme. If
this is the case, the scheme can be analyzed by [8, Theorem 2], which states that the convergence and Hölder
regularity of any such non-stationary scheme depends on the joint spectral radius of the matrices generated
by the so-called limit points of the sequence of level-dependent masks. In Theorem 3.5, we show that for
the schemes with linear dependence on these parameters, the result of [8, Theorem 2] can be simplified and
be made more practical, see examples in Section 3.1. In Section 4, we address the problem of reproduction
property of subdivision schemes and of characterizing the functions that can be generated by non-stationary
subdivision schemes. This question is crucial in many aspects. For instance, the reproduction of exponential
polynomials is strictly connected to the approximation order of a subdivision scheme and to its regularity
[19]. Essentially, the higher is the number of exponential polynomials that are being reproduced, the higher
is the approximation order and the possible regularity of the corresponding scheme.

2. Background

Let M = mI ∈ Zs×s, |m| ≥ 2, be a dilation matrix and E = {0, . . . , |m| − 1}s be the set of the coset rep-
resentatives of Zs/MZs. We study subdivision schemes given by the sequence {Sa(r) , r ∈ N} of subdivision
operators Sa(r) : ℓ(Zs) → ℓ(Zs) that define the subdivision rules by

(Sa(r)c)(α) =
∑

β∈Zs

a
(r)
α−Mβc(β), α ∈ Z

s.

The masks a(r) = {a(r)α , α ∈ Zs}, r ∈ N, are sequences of real numbers a
(r)
α and are assumed to be all

supported in {0, . . . , N}s, N ∈ N. For the given set

K =

∞
∑

r=1

M−1G, G = {−|m|, . . . , N + 1}s, (2.1)

the masks define the square matrices

A(r)
ε =

(

a
(r)
Mα+ε−β

)

α,β∈K
, r ∈ N, ε ∈ E. (2.2)

We assume that the level dependent symbols

a(r)(z) =
∑

α∈Zs

a(r)α zα, zα = zα1
1 · . . . · zαs

s , z ∈ (C \ {0})s .
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of the subdivision scheme

c(r+1) = Sa(r)c(r) = Sa(r)Sa(r−1) . . . Sa(1)c(1), r ∈ N,

satisfy sum rules of order ℓ+ 1, ℓ ∈ N0. For more details on sum rules see e.g [4, 5, 32, 34].

Definition 2.1. Let ℓ ∈ N0, r ∈ N. The symbol a(r)(z), z ∈ (C \ {0})s, satisfies sum rules of order ℓ+ 1 if

a(r)(1, . . . , 1) = |m|s and max
|η|≤ℓ

max
ǫ∈Ξ\{1}

|Dηa(r)(ǫ)| = 0 , (2.3)

where Ξ = {e−i 2π
|m|

ε = (e−i 2π
|m|

ε1 , . . . , e−i 2π
|m|

εs), ε ∈ E} and Dη = ∂η1

∂z
η1
1

. . . ∂ηs

∂zηs
s
.

The assumption that all symbols a(r)(z) satisfy sum rules of order ℓ + 1, guarantees that the matrices

A
(r)
ε , ε ∈ E, r ∈ N, in (2.2) have common left-eigenvectors of the form

(p(α))α∈K , p ∈ Πℓ,

where Πℓ is the space of polynomials of degree less than or equal to ℓ. Thus, the matrices A
(r)
ε , ε ∈ E,

r ∈ N, possess a common linear subspace Vℓ ⊂ R|K| orthogonal to the span of the common left-eigenvectors

of A
(r)
ε , ε ∈ E, r ∈ N. The spectral properties of the set

T = {A(r)
ε |Vℓ

, ε ∈ E, r ∈ N}

determine the regularity of the non-stationary scheme, see [8].

Remark 2.2. In the univariate case, i.e. |m| = |M |, the assumption that the symbols a(r)(z), r ∈ N, satisfy
sum rules of order ℓ+ 1 implies that

a(r)(z) = (1 + z + . . .+ z|m|−1)ℓ
∑

α∈Z

b(r)α zα, z ∈ C \ {0},

and
A(r)

ε |Vℓ
=

(

b
(r)
Mα+ε−β

)

α,β∈{0,...,N−ℓ}
, ε ∈ E. (2.4)

In the multivariate case, the explicit form of the matrices A
(r)
ε |Vℓ

, ε ∈ E, r ∈ N, depends on the choice of
the basis of Vℓ, see e.g. [8, Section 3.1] or [4].

Definition 2.3. A subdivision scheme {Sa(r) , r ∈ N} is Cℓ-convergent, if for any initial sequence c ∈
ℓ∞(Zs) there exists the limit function gc ∈ Cℓ(Rs) such that for any test function f ∈ Cℓ(Rs)

lim
k→∞

∥

∥

∥gc(·)−
∑

α∈Zs

Sa(r)Sa(r−1) . . . Sa(1)c(α)f(Mk · −α)
∥

∥

∥

Cℓ
= 0. (2.5)

For more details on test functions see [21]. Note that, it suffices to check (2.5) for only one test function f .
Note also that, if all limits of a subdivision scheme belong to Cℓ(Rs), then the scheme may not converge in
Cℓ, but only in C0(Rs).

In this paper, we also show how to estimate the Hölder regularity of subdivision limits.

Definition 2.4. The Hölder regularity of the C0−convergent scheme {Sa(r) , r ∈ N} is α = ℓ + ζ, if ℓ is
the largest integer such that gc ∈ Cℓ(Rs) and ζ is the supremum of ν ∈ [0, 1] such that

max
µ∈Ns

0,|µ|=ℓ
|Dµgc(x)−Dµgc(y)| ≤ |x− y|ν , x, y ∈ R

s.

We call α the Hölder exponent of {Sa(r) , r ∈ N}.
3



The joint spectral radius of a set of square matrices was introduced in [41] and is independent of the choice
of the matrix norm ‖ · ‖.
Definition 2.5. The joint spectral radius (JSR) of a compact family M of square matrices is defined by

ρ(M) := lim
n→∞

max
M1,...,Mn∈M

∥

∥

∥

∥

∥

∥

n
∏

j=1

Mj

∥

∥

∥

∥

∥

∥

1/n

.

The link between the JSR and subdivision is well-known, see e.g. [6, 11, 22, 33, 35].

3. Parameter dependent subdivision schemes: matrix approach

There are several examples of subdivision schemes that include a tension parameter. We call them param-
eter dependent schemes. Often the tension parameter is level dependent and shows a certain asymptotic be-
havior which implies the asymptotic behavior of the corresponding non-stationary scheme, i.e. lim

r→∞
a(r) = a.

In this case, although the set {A(r)
ε , ε ∈ E, r ∈ N} is not compact, the convergence and regularity of the

scheme {Sa(r) , r ∈ N} can be analyzed via the joint spectral radius approach in [8]. The results in [8] are
still applicable even if the parameter values vary in some compact interval. Indeed, the existence of the limit
points for the sequence {a(r), r ∈ N} of the subdivision masks is guaranteed, though these limit points are
not always explicitly known.

Definition 3.1. For the mask sequence {a(r), r ∈ N} we denote by A the set of its limit points, i.e. the
set of masks a such that

a ∈ A, if ∃{rn, n ∈ N} such that lim
n→∞

a(rn) = a .

In this section, we show that the joint spectral radius approach can be effectively applied even if the
limit points of {a(r), r ∈ N} cannot be determined explicitly, but the masks a(r) depend linearly on the
parameter ω(r) ∈ [ω1, ω2], −∞ < ω1 < ω2 < ∞.

Well-known and celebrated examples of parameter dependent stationary subdivision schemes with linear
dependence on the parameter are e.g. the univariate four point scheme [25] with the symbol

a(z, ω) =
(1 + z)2

2
+ ω(−z−2 + 1 + z2 − z4), ω ∈

[

0,
1

16

]

, z ∈ C \ {0},

which is a parameter perturbation of the linear B-spline. Also the bivariate butterfly scheme [26] with the
symbol

a(z1, z2, ω) =
1

2
(1 + z1)(1 + z2)(1 + z1z2) + ω c(z1, z2), z1, z2 ∈ C \ {0},

with

c(z1, z2) = z−1
1 z−2

2 + z22z
−1
1 + z−2

1 z−1
2 + z21z

−1
2 − 2z21z

3
2 − 2z31z

2
2 + z21z

4
2 + z41z

2
2 + z31z

4
2

+ z41z
3
2 − 2z−1

1 + z−2
1 − 2z21 − 2z−1

2 + z31 + z−2
2 − 2z22 + z32 (3.1)

is a parameter perturbation of the linear three-directional box spline. Other examples of such parameter
dependent schemes are those with symbols that are convex combinations

ω a(z1, z2) + (1− ω) b(z1, z2) = b(z1, z2) + ω (a(z1, z2)− b(z1, z2)), ω ∈ [0, 1], z1, z2 ∈ C \ {0},

of two (or more) symbols of stationary schemes, see e.g. [7, 14, 16, 29]. Known are also their non-stationary
univariate counterparts with level dependent parameters ω(r) (see [1, 2, 15, 17], for example)

(1 + z)2

2
+ ω(r)(−z−2 + 1 + z2 − z4), r ∈ N, lim

r→∞
ω(r) = ω ∈ R,

4



and
ω(r) a(z) + (1− ω(r)) b(z), r ∈ N, ω(r) ∈ [0, 1].

Note that the use of the level dependent parameters sometimes allows us to enhance the properties of the
existing stationary schemes (e.g. with respect to their smoothness, size of their support or reproduction and
generation properties [7, 14, 15, 17]).

In all schemes considered above, the subdivision rules depend either on the same, fixed, parameter ω =
ω(r) ∈ [ω1, ω2] independent of r, or the parameters ω(r) ∈ [ω1, ω2] are chosen in a such a way that either
lim
r→∞

ω(r) = ω ∈ [ω1, ω2] or the corresponding non-stationary scheme is asymptotically equivalent to some

known stationary scheme. In this section, we provide a matrix method for analyzing regularity of more
general subdivision schemes: we consider the level dependent masks a(ω(r)) = {aα(ω(r)), α ∈ Zs}, r ∈ N,
and require that ω(r) ∈ [ω1, ω2] without any further assumptions on the behavior of the sequence {ω(r), r ∈
N}. We assume, however, that each of the masks depends linearly on the corresponding parameter ω(r).

The level dependent masks {a(ω(r)), r ∈ N} define the corresponding square matrices which we denote
by

Aε,ω(r) =
(

aMα+ε−β(ω
(r))

)

α,β∈K
, ε ∈ E, (3.2)

and the level dependent symbols

a(z, ω(r)) =
∑

α∈Zs

aα(ω
(r))zα, zα = zα1

1 · · · zαs
s , z ∈ (C \ {0})s .

The assumption that each mask a(ω(r)) depends linearly on ω(r), leads to the following immediate, but
crucial result.

Proposition 3.2. Let ℓ ∈ N0 and −∞ < ω1 < ω2 < ∞. If every symbol of the sequence {a(z, ω(r)), r ∈ N}
depends linearly on the parameter ω(r) ∈ [ω1, ω2] and satisfies sum rules of order ℓ+1, then every matrix in
T = {Aε,ω(r) |Vℓ

, ω(r) ∈ [ω1, ω2], ε ∈ E, r ∈ N} is a convex combination of the matrices with ω(r) ∈ {ω1, ω2}

Aε,ω(r) |Vℓ
= (1− t(r))Aε,ω1 |Vℓ

+ t(r)Aε,ω2 |Vℓ
, t(r) ∈ [0, 1].

Proof. Let r ∈ N. We first write ω(r) as a convex combination of ω1 and ω2, i.e.

ω(r) = (1− t(r))ω1 + t(r)ω2 with t(r) ∈ [0, 1] .

Note that all entries of the matrices Aε,ω(r) , ε ∈ E, are the coefficients of the corresponding mask a(ω(r)).

Since the mask coefficients depend linearly on the parameter ω(r), so do the matrices Aε,ω(r) , and hence,
the corresponding linear operators. Therefore, the restrictions of these operators to their common invariant
subspace Vℓ also depend linearly on this parameter.

In the level independent case, i.e. ω(r) = ω for all r ∈ N, the use of the joint spectral radius approach
for studying the convergence and regularity of the corresponding stationary subdivision schemes is well
understood. To show how this approach can be applied in the our non-stationary setting, we need first to
prove the following auxiliary result.

Proposition 3.3. Let ℓ ∈ N0 and

T = {Aε,ω(r) |Vℓ
, ω(r) ∈ [ω1, ω2], ε ∈ E, r ∈ N} (3.3)

be the infinite family of square matrices. If the JSR of the family Tω1,ω2 = {Aε,ω1 |Vℓ
, Aε,ω2 |Vℓ

, ε ∈ E}
satisfies ρ(Tω1,ω2) = γ, then ρ (T ) = γ.
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Proof. First of all observe that ρ(Tω1,ω2) = γ implies, for any δ > 0, the existence of a δ-extremal norm (see
e.g. [27, 31]), i.e. an operator norm ‖ · ‖δ such that

‖Aε,ω1 |Vℓ
‖δ ≤ γ + δ, ‖Aε,ω2 |Vℓ

‖δ ≤ γ + δ. (3.4)

Then, by Proposition 3.2, estimates in (3.4) and subadditivity of matrix operator norms, we get

‖Aε,ω(r) |Vℓ
‖δ = ‖(1−t(r))Aε,ω1 |Vℓ

+t(r)Aε,ω2 |Vℓ
‖δ ≤ (1−t(r))‖Aε,ω1 |Vℓ

‖δ+t(r)‖Aε,ω2 |Vℓ
‖δ = γ+δ, t(r) ∈ [0, 1].

This, due to the arbitrary choice of δ > 0, implies that ρ (T ) = γ, which concludes the proof.

Remark 3.4. (i) Note that, if the family Tω1,ω2 is non-defective, i.e. there exists an extremal norm ‖ · ‖
such that maxε∈E {‖Aε,ω1 |Vℓ

‖, ‖Aε,ω2 |Vℓ
‖} = γ, then T is also non-defective and all products of degree d

of the associated product semigroup have maximal growth bounded by γd. Note also that for any family of
matrices B, B ⊂ T , it follows that ρ (B) ≤ γ. (ii) Moreover, if a family T is irreducible, i.e., its matrices
do not have a common nontrivial subspace, then T is non-defective. Therefore, the case of non-defective
families is quite general.

We are now ready to formulate the main result of this section.

Theorem 3.5. Let ℓ ∈ N0. Assume that every symbol of the sequence {a(z, ω(r)), r ∈ N} depends linearly
on ω(r) ∈ [ω1, ω2] and satisfies sum rules of order ℓ + 1. Then the non-stationary scheme {Sa(ω(r)), r ∈ N}
is Cℓ-convergent, if the JSR of the family Tω1,ω2 = {Aε,ω1 |Vℓ

, Aε,ω2 |Vℓ
, ε ∈ E} satisfies

ρ(Tω1,ω2) = γ < |m|−ℓ. (3.5)

Moreover the Hölder exponent of its limit functions is α ≥ − log|m| γ.

Proof. Since the parameters {ω(r), r ∈ N} vary in the compact interval [ω1, ω2], there exists a set of limits
points (finite or infinite) for the sequence {a(ω(r)), r ∈ N} of subdivision masks. Let us denote this set by A
and the corresponding set of square matrices by TA = {Aε = (aMα+ε−β)α,β∈K , ε ∈ E, a ∈ A}. Obviously,
TA ⊂ T with T as in (3.3). Since by Proposition 3.3 and Remark 3.4, ρ (TA) ≤ γ, the claim follows by [8,
Corollary 1].

Remark 3.6. (i) Note that, due to ρ(TA) ≤ γ, Theorem 3.5 yields a smaller Hölder exponent α than what
could be obtained by [8, Corollary 1]. For example, consider binary subdivision scheme with the symbols

a(z, ω(r)) = z−1 (1 + z)2

2
, r ∈ {1, . . . , L}, L ∈ N,

a(z, ω(r)) = z−1 (1 + z)2

2
+

1

16
(−z−3 + z−1 + z − z3), r ≥ L+ 1, z ∈ C \ {0}.

To apply Theorem 3.5, we can view the corresponding masks as being linearly dependent on parameters
ω(r) ∈ [0, 1

16 ]. The corresponding family T0, 1
16

= {Aε,0|V1 , Aε, 1
16
|V1 , ε ∈ {0, 1}} consists of the four matrices

A0,ω|V1 =









−ω −2ω + 1
2 −ω 0

0 2ω 2ω 0
0 −ω −2ω + 1

2 −ω
0 0 2ω 2ω









, A1,ω|V1 =









2ω 2ω 0 0
−ω −2ω + 1

2 −ω 0
0 2ω 2ω 0
0 −ω −2ω + 1

2 −ω









(3.6)

for ω ∈ {0, 1
16}. Due to

max
ε∈{0,1}

{

‖Aε,0|V1‖∞, ‖Aε, 1
16
|V1‖∞

}

= max
ε∈{0,1}

{

ρ(Aε,0|V1), ρ(Aε, 1
16
|V1)

}

=
1

2
,

6



we get ρ(T0, 1
16
) = 1

2 and, thus, the corresponding scheme is convergent and has the Hölder exponent α ≥ 1.
On the other hand, the set A of limit points of the masks can be explicitly determined in this case and
consists of the mask of the four point scheme. Thus, by [8, Corollary 1], the Hölder exponent is actually
α ≥ 2.

(ii) The regularity estimate given in Theorem 3.5 can be improved, if the actual range of the parameters
ω(r), r ≥ L, for some L ∈ N, is a subinterval of [ω1, ω2], see section 3.1.

(iii) Note that the result of Theorem 3.5 is directly extendable to the case when the matrix family T
depends linearly on a convex polyhedral set Ω = co{ω1, . . . ,ωL} of parameters ω

(r) ∈ Ω ⊂ Rp, r ∈ N, such
that

ω
(r) =

L
∑

j=1

t
(r)
j ωj with t

(r)
j ∈ [0, 1] and

L
∑

j=1

t
(r)
j = 1.

This is the case, for example, when we define the level and parameter dependent symbols

a(z,ω(r)) =

p
∑

j=1

ω
(r)
j aj(z), ω

(r) = (ω
(r)
1 , . . . , ω(r)

p )T ∈ Ω, r ∈ N.

3.1. Examples

In this section we present two univariate examples of level dependent parameter schemes, whose con-
structions are based on the four point and six point Dubuc-Deslauriers schemes. In particular, in Example
3.7, the non-stationary scheme is constructed in such a way that the support of its limit function

φ1 = lim
r→∞

Sa(ω(r)) . . . Sa(ω(1))δ, δ(α) =

{

1, α = 0,
0, otherwise

, α ∈ Z
s,

is smaller than the support of the four point scheme, but its regularity is comparable. In Example 3.8, every
non-stationary mask is a convex combination of the four point and six point Dubuc-Deslauriers schemes.
We show how the regularity of the corresponding non-stationary scheme depends on the range of the corre-
sponding parameters {ω(r), r ∈ N}. Both examples illustrate the importance of the dependency on several
parameters {ω(r), r ∈ N} instead of one ω ∈ R.

Example 3.7. We consider the univariate, binary scheme with the symbols

a(z, ω(r)) = z−1 (1 + z)2

2
, r ∈ {1, 2},

a(z, ω(r)) = z−1 (1 + z)2

2
+ ω(r)(−z−3 + z−1 + z − z3), r ≥ 3, z ∈ C \ {0},

where ω(r) are chosen at random from the interval [ 3
64 ,

1
16 ]. The corresponding family

T0, 1
16

= {Aε,0|V1 , Aε, 1
16
|V1 , ε ∈ {0, 1}}

consists of the same four matrices as in (3.6). And at the first glance the Hölder exponent of this scheme is
α ≥ 1. On the other hand, we can view this scheme as the one with the corresponding matrix family

T 3
64 ,

1
16

= {Aε, 3
64
|V1 , Aε, 1

16
|V1 , ε ∈ {0, 1}},

applied to a different starting data. Then we get ρ(T 3
64 ,

1
16
) = 3/8 and, by Theorem 3.5, the Hölder exponent

is actually α ≥ −log2
3
8 ≈ 1.4150.

The size of the support of φ1 can be determined using the technique from [13] and is given by

[

∞
∑

k=0

2−k−1ℓ(k),

∞
∑

k=0

2−k−1r(k)

]

=

[

−3

2
,
3

2

]

7



with

ℓ(k) = −1, r(k) = 1, k = 0, 1,

ℓ(k) = −3, r(k) = 3, k ≥ 2.

Recall that the support of the basic limit function of the four point scheme is [−3, 3].

Example 3.8. In this example we consider the univariate non-stationary scheme with symbols

a(z, ω(r)) = ω(r)a(z) + (1− ω(r))b(z), ω(r) ∈ [0, 1], z ∈ C \ {0},

where

a(z) = −z−3(z + 1)4

16

(

z2 − 4z + 1
)

is the symbol of the four point scheme and

b(z) =
z−5(z + 1)6

256

(

3z4 − 18z3 + 38z2 − 18z + 3
)

is the symbol of C2−convergent quintic Dubuc-Deslauriers subdivision scheme [24]. By [28], the Hölder
exponent of the Sb is α ≈ 2.8301. To determine the regularity of this level and parameter dependent scheme
we consider the matrix set

T0,1 = {Aε,0|V2 , Aε,1|V2 , ε ∈ {0, 1}}
with the four matrices

A0,ω|V2 =
1

256





















3− 3ω 0 0 0 0 0 0
−7− 9ω −9 + 9ω 3− 3ω 0 0 0 0
45 + 3ω 45 + 3ω −7− 9ω −9 + 9ω 3− 3ω 0 0
−9 + 9ω −7− 9ω 45 + 3ω 45 + 3ω −7− 9ω −9 + 9ω 3− 3ω

0 3− 3ω −9 + 9ω −7− 9ω 45 + 3ω 45 + 3ω −7− 9ω
0 0 0 3− 3ω −9 + 9ω −7− 9ω 45 + 3ω
0 0 0 0 0 3− 3ω −9 + 9ω





















,

A1,ω|V2 =
1

256





















−9 + 9ω 3− 3ω 0 0 0 0 0
45 + 3ω −7− 9ω −9 + 9ω 3− 3ω0 0 0
−7− 9ω 45 + 3ω 45 + 3ω −7− 9ω −9 + 9ω 3− 3ω 0
3− 3ω −9 + 9ω −7− 9ω 45 + 3ω 45 + 3ω −7− 9ω −9 + 9ω

0 0 3− 3ω −9 + 9ω −7− 9ω 45 + 3ω 45 + 3ω
0 0 0 0 3− 3ω −9 + 9ω −7− 9ω
0 0 0 0 0 0 3− 3ω





















for ω ∈ {0, 1}. In this case, the regularity of the non-stationary scheme {Sa(ω(r)), r ∈ N} coincides with the

regularity of the four point scheme. For ω ∈ {a, 1}, a > 0, the scheme {Sa(ω(r)), r ∈ N} is C2−convergent.
And, for ω ∈ {0, a}, a < 1, extensive numerical experiments show that the JSR of the family T0,a is
determined by the the subfamily {Aε,a|V2 , ε ∈ {0, 1}}. For example, for a = 1

2 , we obtain ρ(T0, 12 ) ≈ 0.2078
and, thus, the corresponding Hölder exponent is α ≥ 2.2662.

4. Limitations of generation properties of non-stationary schemes

It is known that certain level dependent (non-stationary) subdivision schemes are capable of generat-
ing/reproducing certain spaces of exponential polynomials, see e.g. [9, 18]. In this section, we are interested
in answering the question: How big is the class of functions that can be generated/reproduced by such
schemes?
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More precisely, we show that, already in the univariate setting, the zero sets of the Fourier transforms of
the limit functions

φk = lim
r→∞

Sa(r) . . . Sa(k)δ, δ(α) =

{

1, α = 0,
0, otherwise

, α ∈ Z
s,

of such schemes are unions of the sets

Γr = {ω ∈ C : a(r)(e−i2πM−rω) = 0}, r ≥ k,

and that the sets Γr are such that Γr +M rZ = Γr. Thus, some elementary functions cannot be generated
by non-stationary schemes, see Example 4.4. Also the requirement that

φ̂k(ω) =

∫

R

φk(x)e
−i2πxωdx, ω ∈ C, k ∈ N,

is an entire function, limits the properties of the functions that can be generated by non-stationary subdi-
vision schemes.

Proposition 4.1. Let {φk, k ∈ N} be continuous functions of compact support satisfying

φk(x) =
∑

α∈Z

a(k)(α)φk+1(Mx− α), k ∈ N, x ∈ R.

Then
{ω ∈ C : φ̂k(ω) = 0} =

⋃

r≥k

Γr,

such that the sets Γr satisfy
Γr +M r

Z = Γr.

Proof. Let k ∈ N. By Paley-Wiener theorem, the Fourier transform φ̂k defined on R has an analytic
extension

φ̂k(ω) =

∫

R

φk(x)e
−i2πxωdx, ω ∈ C,

to the whole complex plane C and φ̂k is an entire function. By Weierstrass theorem [20], every entire function
can be represented by a product involving its zeroes. Define the sets

Γr := {ω ∈ C : a(r)(e−i2πM−rω) = 0}, r ∈ N.

Let zr,1, . . . , zr,N be the zeros of the polynomials a(r)(e−i2πM−rω), counting their multiplicities. Then

Γr = iM r
N
⋃

ℓ=1

Ln(zr,ℓ),

where, by the properties of the complex logarithm, each of the sets iM rLn(zr,ℓ) consists of sequences of
complex numbers and is M r−periodic. Thus, each of the sets Γr satisfy

Γr +M r
Z = Γr, r ∈ N.

The definition of φ̂k as an infinite product of the trigonometric polynomials a(r)(e−i2πM−rω), r ≥ k, yields
the claim.

The following examples illustrate the result of Proposition 4.1.

9



Example 4.2. The basic limit function of the simplest stationary scheme is given by φ1 = χ[0,1). Its Fourier
transform is

φ̂1(ω) =
1− e−i2πω

i2πω
, and {ω ∈ C : φ̂1(ω) = 0} = Z \ {0}.

The mask symbol a(z) = 1 + z has a single zero at z = −1, i.e. e−i2π2−rω = −1 for ω = 2r{ 1
2 + k k ∈ Z},

r ∈ N0. In other words, Γ1 = {1 + 2k : k ∈ Z} and Γr = 2Γr−1 for r ≥ 2. Therefore,

{ω ∈ C : φ̂1(ω) = 0} =
⋃

r∈N

Γr.

Example 4.3. The first basic limit function of the simplest non-stationary scheme is given by φ1(x) =
χ[0,1)(x)e

λx, λ ∈ C. Its Fourier transform is

φ̂1(ω) =
e−i2πω+λ − 1

−i2πω + λ
, ω ∈ C, and {ω ∈ C : φ̂1(ω) = 0} = − iλ

2π
+ Z \ {0}.

The mask symbol a(r)(z) = 1 + eλ2
−r

z has a single zero at z = −e−λ2−r

, i.e. e−i2π2−rω = −e−λ2−r

for
ω = − iλ

2π + 2r{ 1
2 + k : k ∈ Z}, r ∈ N. Note that Γ1 = − iλ

2π + {1 + 2k : k ∈ Z} and

⋃

r∈N

2r{1
2
+ k : k ∈ Z} = Z \ {0}.

Therefore,

{ω ∈ C : φ̂1(ω) = 0} =
⋃

r∈N

Γr.

In the next example we identify a compactly supported function that cannot be generated by any non-
stationary subdivision scheme.

Example 4.4. Let us consider the compactly supported function

f(x) = χ[−1,1](x)
2√

1− x2
, x ∈ R.

It cannot be a limit of any non-stationary subdivision scheme. Indeed, its Fourier transform

J0(ω) =

∫

R

f(x)e−ixωdx, ω ∈ C, (4.1)

is the Bessel function J0 of the first kind, which is entire, but has only positive zeros. The lower bound for

its zeros j0,s, s ∈ N, is given by j0,s >
√

(s− 1
4 )

2π2, see [36]. Thus, Proposition 4.1 implies the claim.

Acknowledgements: Vladimir Protasov was sponsored by RFBR grants 13−01−00642, 14−01−00332
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