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A PROCEDURE FOR DETERMINING THE HEAT 

TRANSFER COEFFICIENTS OF SURFACES 

WITH REGULAR RELIEF

N. A. Kiselev,1 S. A. Burtsev,2  UDC 536.24

and M. M. Strongin1

A procedure for processing experimental data, which enables the fi elds of the distribution of the heat transfer 

coeffi cients on surfaces with regular relief to be determined for any temperature gradients and surface 

shapes is proposed. It is shown that, when estimating local and mean-integral characteristics of smooth 

surfaces a one-dimensional model of a semi-infi nite body can be used, while in regions of considerable 

temperature gradients, particularly for curvilinear surfaces, the model gives reduced values of the heat 

transfer coeffi cient.
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 The problem of increasing the amount of heat that can be drawn off unit area of a surface for a specifi ed temperature 

drop, i.e., the intensifi cation of heat exchange, remains one of the most important at the present time. The increase in the 

number of publications, both Russian and abroad, and also the increasing complexity of the procedures for investigating these 

processes, indicates the importance of this subject. The action of the majority of known heat-exchange intensifi ers is based on 

partial or complete rupture of the boundary layer of the gas (both thermal and dynamic) on the heat-exchange surface [1, 2]. 

As a rule, complex spatial vortex structures arise, and zones of fl ow recirculation are formed. Consequently, the distribution 

of the heat transfer and friction coeffi cients becomes exceptionally nonuniform [3]. Hence, for an experimental investigation 

of the thermal hydraulic characteristics of heat-exchange surfaces having a regular relief (i.e., distributed in accordance with 

a certain heat-exchange intensifi er law), one must determine the local values of the parameters being investigated (the heat-ex-

change coeffi cient and the thermal resistance) with high spatial resolution and, if necessary, average these coeffi cients to ob-

tain the mean-integral characteristics.

 When determining the hydraulic characteristics, the use of direct methods of measurement gives the most reliable 

values of the overall resistance of the surface to the gas fl ow [4]. Obtaining the local heat transfer coeffi cients is considerably 

more diffi cult than the hydraulic characteristics, but the use of modern diagnostic and measuring instruments enables the char-

acteristics of the heat exchange to be investigated with high spatial resolution. The most reliable methods of determining the 

local heat transfer coeffi cients and thermal characteristics of the surface are methods involving the use of liquid crystals and 

thermal imaging techniques, which enable one to investigate both steady and unsteady processes [5–7]. In this paper, the heat 

transfer coeffi cient was determined by an unsteady method using thermal imaging equipment.

 The Experimental Bench and the Measuring Equipment. The experimental investigations were carried out in a 

small subsonic wind tunnel at the Institute of Mechanics of the Moscow State University [8]. The upper and lower walls of 

the slotted channel (height 30 mm, width 300 mm, and length 1080 mm) are sectioned. In one of the sections of the upper wall 
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there is a Zn–Se window, transparent for infrared radiation and thus anabling the use of thermal-imaging equipment. On the 

lower wall of the channel, there is a working section, including two “fl oating” elements attached jointly with heaters on elastic 

elements and moving as a result of hydrodynamic interaction of the fl ow with the surface. Plates are placed on these elements, 

one of which is a sample plate with a smooth surface, while the other is the regular relief being investigated. Each of the sec-

tions of the lower wall can be heated, which enables investigations to be made for different lengths of both the thermal layer 

and the dynamic boundary layers. The temperature fi eld nonuniformity within each section and between them does not exceed 

2°C, while within the plate it is 1°C. The drop between the initial temperature of the wall surface and the temperature of the 

kernel of the fl ow is approximately 70°C, and the depth of cooling of the surfaces (the ratio of the temperature drops between 

the wall and the fl ow at the beginning and end of the experiment) reaches 0.3 [9]. This wall enables us to investigate the ther-

mal and hydraulic characteristics of both surfaces simultaneously in the course of a single experiment.

 We used the unsteady heat exchange method to determine the heat transfer coeffi cient: during the cooling of the 

surface of the wall being investigated in the course of approximately 40 sec we measured, at a fi xed frequency (1 Hz) the tem-

perature distribution on the surface of the plates using a thermal imaging camera and the temperature of the core of the fl ow 

using thermocouples. We then calculated the corresponding heat transfer coeffi cient.

 Statement of the Problem. The most popular procedure for determining the heat transfer coeffi cient from the rate 

of cooling of the surface uses the solution of the one-dimensional heat conduction equation in a semi-infi nite body in the form 

of the time dependence of the relative dimensionless surface temperature [9]:

 ϑn(τ)=
T0 −T (0, τ)

T0 −Tc
=1− eH

2aτerfc H aτ( ),  (1)

where T0 is the surface temperature at the initial instant of time; T(0, τ) is the surface temperature at the instant of time τ; Tc is 

the temperature at the core of the fl ow; H = α/a; α is the heat transfer coeffi cient; and a is the thermal diffusivity.

 The assumptions made when solving (1) mean that this expression has limited applicability when processing exper-

imental data. Consequently, it is necessary to set up a mathematical model which describes the processes occurring in the 

experiment more accurately. It is worth noting the following properties of one-dimensional model (1), which is diffi cult to use 

in experimental investigations.

 1. The heating arrangement employed does not guarantee the uniformity of the temperature fi eld at the initial instant 

of time. A heater placed between the elastic element and the model being investigated has a higher temperature than the sur-

face considered.

 2. The presence of local vortex structures and recirculation zones leads to nonuniformity of the heat-transfer process-

es in the boundary layer of the gas on the surface being investigated and, consequently, to a nonuniformity in the distribution 

of the coeffi cients α. This, in turn, gives rise to a nonuniformity of the temperature fi eld on the surface when investigating a 

vortex-forming relief. The presence of such temperature gradients produces longitudinal and transverse thermal fl ows (with 

respect to the direction of motion of the gas).

 3. Curvilinearity of the geometry of the heat-exchange surface.

 4. The presence of a heat-exchange intensifi er also leads to nonuniformity of the temperature fi elds and the thermal 

fl ows in the region of the greatest changes in the coeffi cient α.

 In order to take into account the particular features of the surface geometry being investigated (in this investigation 

the holes) and the heat-exchange processes, which accompany the fl ow over the surface with such a relief (heat-exchange 

processes in separating zones and recirculation zones, and heat exchange when there are vortex structures) [1, 3], a method of 

determining the local coeffi cients α is necessary. For this purpose, in this research we used the solution of the differential 

equation of a three-dimensional unsteady process of the cooling of a plate of fi nite dimensions, obtained by the fi nite element 

method. We will demonstrate the main aspects of this procedure.

 Consider the problem of the nonstationary propagation of heat in a solid with heat-exchange on the surface, de-

scribed by the relation

 q(x, y, τ) = α(x, y)∆T(x, y, τ), 
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where q(x, y, τ) is the specifi c heat fl ux; x and y are the spatial coordinates (x coincides with the direction of the fl ow, and y is 

directed across the fl ow); ∆T(x, y, τ) = T(x, y, τ)|S  – Tc is the temperature head; and S = S(x, y) is the limit of the heat exchange.

 It is required to obtain the distribution of the coeffi cients α on the vortex-forming surface of the plate using the sets 

of temperatures on the surface of the plates and the temperatures in the kernel of the fl ow, obtained in the experiment, mea-

sured using two thermocouples, which are placed on the axis of the channel before and after the plate.

 The Initial System of Equations, Boundary and Initial Conditions. Consider the equation of nonstationary heat con-

duction in an isotropic solid [9]:

 λ(∂2T/∂x2 + ∂2T/∂y2 + ∂2T/∂z2) = ρc∂T/∂t, (2)

where λ is the thermal conductivity, T is the temperature of the solid, ρ is the density, c is the specifi c heat capacity, and z is 

the spatial coordinate, directed along the normal to the OXY plane.

 It is usually required to obtain the temperature distribution (fi eld) T = ƒ(x, y, z, τ) in the body, satisfying the initial 

conditions T0 = ƒ0(x, y, z, τ) and the boundary conditions T = Tb on the boundary S1 and/or λ(lx∂T/∂x + ly∂T/∂y + lz∂T/∂z) + 

+ q + α(T – Tc) = 0 on S2, where Tb is the known temperature of the boundary (the heat-exchange surface), and lx, ly, and lz 

are the direction cosines of the vector normal to the boundary S.

 To obtain the temperature fi eld in the plate, the calculated region is divided into a certain number of fi nite elements, 

in which T is determined using the form functions of this element [10]. It was shown in [11] that when using linear elements 

(in this case the approximating function will be piecewise-continuous with a discontinuity of the fi rst derivative on the bound-

aries of the elements), the problem of solving Eq. (2) is well-posed, and the solution can be obtained with a defi nite error.

 In order to obtain the system of linear equations describing the temperature fi eld in the region considered, we sum 

the following matrices for each element E:

 the thermal conduction matrix

  (3)

 the heat-capacity matrix

  (4)

 the matrix of the column vector of the thermal load

  (5)

where B is the matrix of the derivatives of the shape functions of the element; Bij = ∂Ni/∂xj, i = 1, ..., n, j = 1, 2, 3, n is the 

number of nodes of the fi nite elements; D is the diagonal matrix of the thermal conductivities; V is the volume of fi nite ele-

ments; N is a column vector of the shape function of the fi nite elements; s is the surface of the fi nite elements, and the surfaces 

s1 and s2 belong to the corresponding boundaries S1 and S2.

 The integrals of Eqs. (3)–(5) are found for each fi nite element and collected in global matrices of the thermal con-

ductivity, the thermal capacity and the thermal load, respectively. The result of the assembly is a system of fi rst-order linear 

algebraic equations, which can be solved by any known method [11]:

 C∂T/∂t + KT + F = 0, (6)

where C and K are the global heat capacity and thermal conductivity matrices, respectively, F is the column vector of the 

thermal load, and T is the column of values of the temperature and specifi ed nodes.

 The solution of (2) in the case considered is the temperature distribution at the nodes of the net, describing the plate 

in question. After setting up the global matrix, it is necessary to obtain the nodal values of the temperature in the plate and the 
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boundary conditions on the plate surface – the distribution of the coeffi cients α. Terms defi ned by the coeffi cient α occur in 

the thermal conductivity matrix in the form of an additional term (here the values of the temperature at the nodes 

are known from experiment), and also in the vector of the boundary conditions (in our case, the temperature of 

the kernel of the fl ow Tc is known), where the temperature of the fl ow is constant for all points on the surface within the limits 

of a single time step. Hence, the number of unknowns in the system of equations obtained (the temperatures at the nodes, 

situated inside the plate, and the coeffi cients α occurring in the boundary conditions on the plate surface) is equal to the num-

ber of equations in system (6). The distribution of the coeffi cients α is determined together with the temperature fi eld inside 

the plate by solving the system of equations obtained.

 The Conditions for Carrying Out the Experiment, and the Time and Spatial Resolution of the Equipment. 
When the plate is heated using an electric heater (the backing) to the initial surface temperature T0, the thermal fi eld in the 

plate will not be uniform due to leakage of heat from its surface. Hence, the initial state of the plate for processing the exper-

imental data is determined by solving Eq. (2) for the case when the plate is heated with the boundary condition of a constant 

heat fl ux from the backing [12].

 The whole time interval of the cooling process is divided into equal steps Δτ = 1 sec. However, when there are con-

siderable temperature drops during a single time step, it is possible to divide the time interval between successive thermo-

grams into several intermediate steps. Then, at the end of each step the temperature fi eld on the surface should correspond to 

the temperature fi eld on the thermogram.

 The resolution of the thermal imaging system is 320 × 240 points, whereas the number of nodes along the x and y 

coordinates, and also in the depth of the plate (along the z coordinate), may be different, and, in general, it is not equal to the 

number of points where the temperature is recorded, which fall within the calculated region. In order to relate the values at the 

nodes of the net and the experimental data, a linear approximation of the temperature between the experimental points is used.

 An Example of the Processing of the Experimental Data and a Comparison of the Results with the One-
Dimensional Model. We investigated experimentally the heat exchange on a smooth surface and a surface with holes 

Fig. 1. Distribution of the heat transfer coeffi cients α, W/(m2·K), obtained using the three-dimensional model, 

ignoring (a) and taking into account (b) the nonlinearity of the surface for a plate with holes (the direction of 

the fl ow is indicated by the arrow).
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(the longitudinal length of the plate was 125 mm, the transverse dimension was 100 mm, the thickness was 6 mm, and the 

material was plexiglass), the front edges of which were fi xed in a slotted channel in parallel at a distance x = 350 mm from 

the input. The whole of the lower wall was heated, and consequently the length of the thermal boundary layer is 350 mm. 

The geometrical parameters of the array of holes were as follows: the hole depth was 1 mm and its diameter was 7.5 mm, the 

steps were 18 mm in the longitudinal direction and 12 mm in the transverse direction. The holes were arranged in a corridor. 

The parameters of the free stream remain constant during the experiment: its velocity was 59 m/sec, and the temperature of 

the core of the fl ow was 20.6°C.

 We will consider the results of processing the experimental data using the procedure considered and the procedure [13] 

for determining the coeffi cients α for the region around a hole situated at the epicenter of the developed vortex fl ow on the 

surface being investigated in the middle (along the width of the plate) series of holes. The thermal imaging fi elds describing 

the region considered have a resolution of 43 × 43 points.

 For a plate with holes, we show in Fig. 1a the distribution of the coeffi cients α obtained using the three-dimensional 

model, ignoring the nonlinearity of the surface. It follows from a comparison of the distributions of the coeffi cients α along 

the longitudinal and transverse axes of the hole, obtained using the one-dimensional and three-dimensional models, that the 

values obtained for a large part of the fragment of the plate considered agree with the exception of regions with considerable 

temperature gradients. Consequently, the choice of plexiglass with a low thermal diffusivity a as the material of the working 

plates enables one to use the one-dimensional model for processing the experimental data in the case of smooth surfaces 

without having to take into account the plate thickness (for the duration of the experiment considered [8]). The absence of 

relief enables thermal fl ows to be neglected in directions different from the normal to the surface. Then, the disagreement in 

the average coeffi cients α for the one-dimensional and three-dimensional plane models amounts to 1.5% and increases as 

these coeffi cients increase. At the same time, the instrumental errors when measuring the thermal characteristics of surfaces 

have an error when determining α of the order of 4% (for similar temperature drops and durations of the experiment) [13]. 

Hence, neglecting thermal fl uxes in planes parallel to OXY, one can obtain errors not exceeding the errors in obtaining the 

experimental data.

 The distribution of the coeffi cients α for a plate with holes, obtained taking the three-dimensional form of the heat 

fl uxes and the curvilinearity of the geometry of the surface into account, is shown in Fig. 1b. In Fig. 2, we show the distributions 

of the coeffi cients α along the longitudinal and transverse axes of the hole, obtained using the one-dimensional and three-di-

mensional models. It follows from Fig. 2 that the curvilinearity of the surface makes a considerable contribution to the repro-

duction pattern of the heat fl uxes. In regions corresponding to the bottom and the far edge of the hole (with respect to the fl ow), 

the values obtained using these procedures differ considerably. The coeffi cients α for the region where there is a break in the 

fl ow (along the far edge), calculated from (2), exceed the values obtained for the one-dimensional model by more than 13%, 

Fig. 2. Distribution of α, W/(m2·K), along the longitudinal and transverse 

axes of the hole, obtained taking into account the nonlinearity of the sur-

face for a plate: 1, 2) on the axis of the hole along the direction of the fl ow 

for the three-dimensional and one-dimensional [13] models, respectively; 

3, 4) transverse to the direction of the fl ow.
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while the average values over the surface of the hole differ by 10%, which exceeds the errors in determining them. Over the 

plane part of the fragment of the plate, the coeffi cients α calculated using the one-dimensional and three-dimensional models 

agree with a suffi cient degree of accuracy and, consequently, the coeffi cient α, averaged over the whole region, obtained taking 

the curvilinearity of the surface into account exceeds the corresponding value for the model of a semi-infi nite body by 6%.

 Conclusion. We have considered a procedure for determining experimentally the fi eld of the heat transfer coeffi -

cients on surfaces with regular relief. The heat transfer coeffi cient was calculated using a three-dimensional equation of un-

steady heat conduction, set up taking into account the experimentally obtained set of temperature distributions when the 

surface of the plate is cooled.

 We have shown that the use of materials with low thermal conductivity enables one to neglect not only the nonuni-

formity of the initial temperature fi eld in the plate, but also the overfl ow of heat in the longitudinal and transverse directions 

of the surfaces having a shape close to rectilinear. When solving such problems, it is best to use the one-dimensional model 

of a semi-infi nite body (1). However, when considering the surface relief (in this case, holes) considerable differences were 

found between the model which takes into account the surface relief and the model of a semi-infi nite body, particularly, in the 

region of considerable changes in the temperature and thickness of the plate. When the curvilinearity of the relief is taken into 

account, the value of the heat transfer coeffi cient averaged over the surface of a hole is 10% higher, which is particularly 

important when investigating the effect of the shape of the relief (the depression) on the thermal-hydraulic characteristics of 

the surfaces. Then, the heat transfer coeffi cient averaged over the whole of the region considered exceeds the similar value for 

the one-dimensional model by 6%. When using the three-dimensional model, ignoring the curvilinearity, the difference of the 

average heat transfer coeffi cient from the value obtained using the one-dimensional model does not exceed 1.5%.

 Hence, in the experimental determination of both local and average values of the heat-exchange parameters, it is 

necessary to take the surface relief into account and, consequently, to use the corresponding processing procedure.

 This research was supported by the Russian Foundation for Basic Research (Grant No. 15-08-08428) and by the 

President of the Russian Federation (Grant to Scientifi c Schools No. 5650.2014.8).
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