
1Critial solutions of nonlinear equations∗A.F. Izmailov, A.S. Kurennoy, and M.V. SolodovMosow State University, Mosow, Russia,Tambov State University, Tambov, Russia,IMPA, Rio de Janeiro, Brazil1. Introdution and the key assumptionWe onsider a nonlinear equation
Φ(u) = 0,where Φ : Rp → R

p is a given smooth mapping. Even though here wedeal solely with the ase when the number of equations is the sameas the number of variables, it will never be assumed that the solutionin question is isolated, and moreover, the ase of nonisolated solutionswill be of speial interest. Observe that any nonisolated solution ū isneessarily singular in a sense that Φ′(ū) is a singular matrix.In [7℄, it was shown that a solution ū of the unonstrained equation�survives� perturbations in large lasses if Φ is smooth enough, and thereexists v̄ ∈ kerΦ′(ū) suh that Φ is 2-regular at ū in the diretion v̄, thelatter meaning that
imΦ′(ū) + Φ′′(ū)[v̄, kerΦ′(ū)] = R

p.Importantly, suh v̄ may exist even if ū is a nonisolated solution.Furthermore, as demonstrated in [7℄, if ū is a singular solution, theneeded v̄ annot belong to TΦ−1(0)(ū), and hene it an never exist if
TΦ−1(0)(ū) = kerΦ′(ū). The latter is one of the two ingredients of theonept of nonritiality of solution ū, as introdued in [7℄ The seondingredient is Clarke regularity of Φ−1(0) at ū, and as demonstrated in[7℄, under the appropriate smoothness assumptions, this ombination ofproperties is equivalent to the loal Lipshitzian error bound

dist(u, Φ−1(0)) = O(‖Φ(u)‖) as u ∈ R
p tends to ū,whih is known to be equivalent to the following upper Lipshitzianproperty:

dist(u(w), Φ−1(0)) = O(‖w‖) as w ∈ R
p tends to 0,
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2where u(w) is any solution of the perturbed equation
Φ(u) = w,lose enough to ū. In addition, the results in [7℄ imply that singularnonritial solutions of the unonstrained equation an only be stablesubjet to very speial perturbations. At the same time, ritial solutions(i.e., those whih are not nonritial), or, more preisely, those solutionsfor whih TΦ−1(0)(ū) is a proper subset of kerΦ′(ū), an naturally satisfythe 2-regularity ondition with some v̄ ∈ kerΦ′(ū), and hene, be stablesubjet to wide lasses of perturbations.In this work, we demonstrate that 2-regularity in a diretion v̄ ∈

kerΦ′(ū) (whih is our key assumption, and whih may never hold atnonritial singular solutions, as disussed above) makes ū speiallyattrative for sequenes generated by Newton-type methods. Apart formthe basi Newton method (NM), we will onsider some modi�ationsof it, intended speially for takling the ase of nonisolated solution.Spei�ally, these are the Levenberg�Marquardt method (L-MM) andthe LP-Newton method (LP-NM).2. Perturbed Newton methodWe de�ne the perturbed Newton method (pNM) for equation inquestion as follows: for a urrent iterate uk ∈ R
p, the next iterate is

uk+1 = uk + vk, with vk omputed as a solution of linear equation
Φ(uk) + (Φ′(uk) + Ω(uk))v = ω(uk),where Ω : Rp → R
p×p and ω : Rp → R

p haraterizes perturbation.The following an be regarded as an extension of [5, Lemma 5.1℄ fromthe basi NM to pNM.Every u ∈ R
p is uniquely deomposed into the sum u = u1 + u2,

u1 ∈ (kerΦ′(ū))⊥, u2 ∈ kerΦ′(ū). Let Π be the orthogonal projetoronto (imΦ′(ū))⊥, and assume that the norm is Eulidian. Let S standfor the unit sphere in R
p.Theorem. Let Φ be twie di�erentiable near ū ∈ R

p, with its seondderivative Lipshitz-ontinuous with respet to ū. Let ū be a solution ofthe nonlinear equation in question, and assume that Φ is 2-regular at ūin a diretion v̄ ∈ kerΦ′(ū) ∩ S. Let Ω : Rp → R
p×p and ω : Rp → R

psatisfy the estimates
Ω(u) = O(‖u − ū‖), ΠΩ(u) = O(‖u1 − ū1‖) +O(‖u − ū‖2),
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ω(u) = O(‖u− ū‖2), Πω(u) = O(‖u − ū‖‖u1 − ū1‖) +O(‖u− ū‖3).Then there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 suh that any startingpoint u0 ∈ R

p \ {ū} satisfying
‖u0 − ū‖ ≤ ε,

∥

∥

∥

∥

u0 − ū

‖u0 − ū‖
− v̄

∥

∥

∥

∥

≤ δuniquely de�nes the sequene {uk} ⊂ R
p of the pNM, uk

2 6= ū2 for all k,the sequene {uk} onverges to ū, and
lim
k→∞

‖uk+1 − ū‖

‖uk − ū‖
=

1

2
, ‖uk+1

1 − ū1‖ = O(‖uk − ū‖2).Theorem above establishes the existene of a set with nonemptyinterior, whih is star-like with respet to ū, and suh that the pNMinitialized at any point of this set onverges linearly to ū. Moreover, if Φis 2-regular at ū in at least one diretion v̄ ∈ kerΦ′(ū), then set of suh
v̄ is open and dense in kerΦ′(ū)∩S: its omplement is the null set of thenontrivial homogeneous polynomial detΠΦ′′(ū)[·]|ker Φ′(ū) onsidered on
kerΦ′(ū)∩S. The union of onvergene domains oming with all suh v̄ isalso a star-like onvergene domain with nonempty interior. In the asewhen Φ′(ū) = 0 (full singularity) this domain is quite large. In partiular,it is �asymptotially dense�: its omplement is �asymptotially thin�, andthe only exluded diretions are those in whih Φ is not 2-regular at ū,whih is the null set of a nontrivial homogeneous polynomial.The assumptions on perturbations in Theorem automatially hold if

Ω(u) = O(‖Φ(u)‖), ω(u) = O(‖u− ū‖‖Φ(u)‖).3. Levenberg�Marquardt methodThe L-MM is a well-established tool for takling possibly nonisolatedsolutions. The iteration subproblem of this method has the formminimize 1

2
‖Φ(uk) + Φ′(uk)v‖2 +

1

2
σ(uk)‖v‖2, v ∈ R

p,where σ : Rp → R+ de�nes the regularization parameter. In partiular,from the results in [8℄ it follows that being initialized near a nonritialsolution, the L-MM with σ(u) = ‖Φ(u)‖2 generates a sequene whih isquadratially onvergent to a (nearby) solution.



4 The L-MM subproblem is equivalent to the linear system
(Φ′(uk))TΦ(uk) + ((Φ′(uk))TΦ′(uk) + σ(uk)I)v = 0,haraterizing stationary points of that onvex optimization problem.From [5, Lemma 3.1℄ it an be seen that v̄ in Theorem applied tothe basi NM omes with a �oni neighborhood� suh that for every uin it, Φ′(u) is invertible, and (Φ′(u))−1 = O(‖u − ū‖−1). Multiplyingboth sides of the iteration system by (((Φ′(uk))T)−1 = (((Φ′(uk))−1)T,we now obtain

Φ(uk) + (Φ′(uk) + σ(uk)(((Φ′(uk))−1)T)v = 0,whih is the pNM iteration system with the perturbation terms
Ω(u) = σ(u)(((Φ′(u))−1)T = O(‖u− ū‖−1σ(u)), ω ≡ 0as u → ū, and therefore, the needed requirements on Ω will hold, e.g., if

σ(u) = ‖Φ(u)‖τ with τ ≥ 2.Moreover, in the ase when Φ′(ū) = 0 (full singularity) the appropri-ate values are all τ ≥ 3/2.
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Fig. 1. Levenberg�Marquardt method with τ = 1.Example. Consider the equality-onstrained optimization problemminimize x2 subjet to x2 = 0.Stationary points and assoiated Lagrange multipliers of this problemare haraterized by the Lagrange optimality system whih has the form
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Fig. 2. Levenberg�Marquardt method with τ = 3/2.of a nonlinear equation with Φ : R2 → R
2, Φ(u) = (2x(1+λ), x2), where

u = (x, λ). The unique feasible point (hene, the unique solution, andthe unique stationary point) of this problem is x̄ = 0, and the set ofassoiated Lagrange multipliers is the entire R. Therefore, the solutionset of the Lagrange system (i.e., the primal-dual solution set) is {x̄}×R.The unique ritial solution is ū = (x̄, λ̄) with λ̄ = −1, the one for whih
Φ′(ū) = 0 (full singularity).In Figures 1 and 2, the vertial gray line orresponds to the primal-dual solution set. These �gures demonstrate some iterative sequenesgenerated by the L-MM, and the domains from whih onvergene tothe ritial solution was deteted.4. LP-Newton methodA more reent approah, alternative to the L-MM, is the LP-NM



6proposed in [2℄. The iteration subproblem of this method has the formminimize γsubjet to ‖Φ(uk) + Φ′(uk)v‖ ≤ γ‖Φ(uk)‖2,
‖v‖ ≤ γ‖Φ(uk)‖,
(v, γ) ∈ R

p × R.With l∞ norm, this is a linear programming problem. As demonstratedin [2, 3℄, loal onvergene properties of the LP-NM (near nonritialsolutions!) are the same as for L-MM.The �rst onstraint in the LP-NM subproblem an be interpreted asthe pNM with Ω ≡ 0 and some ω(·), whih will satisfy the assumptionsin Theorem if the optimal value γ(u) of the LP-NM subproblem with
uk = u satis�es

γ(u) = O(‖Φ(u)‖−1‖u− ū‖)as u → ū.In order to establish the needed estimate on γ(·), suppose again that
u belongs to the �oni neighborhood� of v̄ where the basi NM step v(u)is uniquely de�ned, and v(u) = O(‖u − ū‖). Then the point (v, γ) =
(v(u), ‖v(u)‖/‖Φ(u)‖) is feasible in the LP-N subproblem, and hene,

γ(u) ≤ γ = ‖Φ(u)‖−1‖v(u)‖ = O(‖Φ(u)‖−1‖u− ū‖)as u → ū.Figure 3 has the same meaning as Figure 2, but for LP-NM insteadof L-MM, with the same onlusions.A detailed exposition of these results an be found in [6℄. The exten-sions of these and related results to onstrained equations an be foundin [1℄, [4℄. Referenes1. A.V. Arutyunov and A.F. Izmailov Stability of possibly nonisolatedsolutions of onstrained equations, with appliations to omple-mentarity and equilibrium problems. Set-Valued Var. Analys. 26(2018), 327�352.2. F. Fahinei, A. Fisher, and M. Herrih. An LP-Newton method:Nonsmooth equations, KKT systems, and nonisolated solutions.Math. Program. 146 (2014), 1�36.3. F. Fahinei, A. Fisher, and M. Herrih. A family of Newtonmethods for nonsmooth onstrained systems with nonisolated solu-tions. Math. Methods Oper. Res. 77 (2013), 433�443.
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Fig. 3. LP-Newton method.4. A. Fisher, A.F. Izmailov, and M.V. Solodov. Loal attrators ofNewton-type methods for onstrained equations and omplemen-tarity problems with nonisolated solutions. J. Optim. Theory Appl.2018. DOI 10.1007/s10957-018-1297-2.5. A. Griewank. Starlike domains of onvergene for Newton's methodat singularities. Numer. Math. 35 (1980), 95�111.6. A.F. Izmailov, A.S. Kurennoy, and M.V. Solodov. Critial solutionsof nonlinear equations: loal attration for Newton-type methods.Math. Program. 167 (2018), 355�379.7. A.F. Izmailov, A.S. Kurennoy, and M.V. Solodov. Critial solutionsof nonlinear equations: stability issues. Math. Program. 168 (2018),475�507.8. N. Yamashita and M. Fukushima. On the rate of onvergene ofthe Levenberg�Marquardt method. Computing. Suppl. 15 (2001),237�249.


