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ow State University, Mos
ow, Russia,Tambov State University, Tambov, Russia,IMPA, Rio de Janeiro, Brazil1. Introdu
tion and the key assumptionWe 
onsider a nonlinear equation
Φ(u) = 0,where Φ : Rp → R

p is a given smooth mapping. Even though here wedeal solely with the 
ase when the number of equations is the sameas the number of variables, it will never be assumed that the solutionin question is isolated, and moreover, the 
ase of nonisolated solutionswill be of spe
ial interest. Observe that any nonisolated solution ū isne
essarily singular in a sense that Φ′(ū) is a singular matrix.In [7℄, it was shown that a solution ū of the un
onstrained equation�survives� perturbations in large 
lasses if Φ is smooth enough, and thereexists v̄ ∈ kerΦ′(ū) su
h that Φ is 2-regular at ū in the dire
tion v̄, thelatter meaning that
imΦ′(ū) + Φ′′(ū)[v̄, kerΦ′(ū)] = R

p.Importantly, su
h v̄ may exist even if ū is a nonisolated solution.Furthermore, as demonstrated in [7℄, if ū is a singular solution, theneeded v̄ 
annot belong to TΦ−1(0)(ū), and hen
e it 
an never exist if
TΦ−1(0)(ū) = kerΦ′(ū). The latter is one of the two ingredients of the
on
ept of non
riti
ality of solution ū, as introdu
ed in [7℄ The se
ondingredient is Clarke regularity of Φ−1(0) at ū, and as demonstrated in[7℄, under the appropriate smoothness assumptions, this 
ombination ofproperties is equivalent to the lo
al Lips
hitzian error bound

dist(u, Φ−1(0)) = O(‖Φ(u)‖) as u ∈ R
p tends to ū,whi
h is known to be equivalent to the following upper Lips
hitzianproperty:

dist(u(w), Φ−1(0)) = O(‖w‖) as w ∈ R
p tends to 0,
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2where u(w) is any solution of the perturbed equation
Φ(u) = w,
lose enough to ū. In addition, the results in [7℄ imply that singularnon
riti
al solutions of the un
onstrained equation 
an only be stablesubje
t to very spe
ial perturbations. At the same time, 
riti
al solutions(i.e., those whi
h are not non
riti
al), or, more pre
isely, those solutionsfor whi
h TΦ−1(0)(ū) is a proper subset of kerΦ′(ū), 
an naturally satisfythe 2-regularity 
ondition with some v̄ ∈ kerΦ′(ū), and hen
e, be stablesubje
t to wide 
lasses of perturbations.In this work, we demonstrate that 2-regularity in a dire
tion v̄ ∈

kerΦ′(ū) (whi
h is our key assumption, and whi
h may never hold atnon
riti
al singular solutions, as dis
ussed above) makes ū spe
iallyattra
tive for sequen
es generated by Newton-type methods. Apart formthe basi
 Newton method (NM), we will 
onsider some modi�
ationsof it, intended spe
ially for ta
kling the 
ase of nonisolated solution.Spe
i�
ally, these are the Levenberg�Marquardt method (L-MM) andthe LP-Newton method (LP-NM).2. Perturbed Newton methodWe de�ne the perturbed Newton method (pNM) for equation inquestion as follows: for a 
urrent iterate uk ∈ R
p, the next iterate is

uk+1 = uk + vk, with vk 
omputed as a solution of linear equation
Φ(uk) + (Φ′(uk) + Ω(uk))v = ω(uk),where Ω : Rp → R
p×p and ω : Rp → R

p 
hara
terizes perturbation.The following 
an be regarded as an extension of [5, Lemma 5.1℄ fromthe basi
 NM to pNM.Every u ∈ R
p is uniquely de
omposed into the sum u = u1 + u2,

u1 ∈ (kerΦ′(ū))⊥, u2 ∈ kerΦ′(ū). Let Π be the orthogonal proje
toronto (imΦ′(ū))⊥, and assume that the norm is Eu
lidian. Let S standfor the unit sphere in R
p.Theorem. Let Φ be twi
e di�erentiable near ū ∈ R

p, with its se
ondderivative Lips
hitz-
ontinuous with respe
t to ū. Let ū be a solution ofthe nonlinear equation in question, and assume that Φ is 2-regular at ūin a dire
tion v̄ ∈ kerΦ′(ū) ∩ S. Let Ω : Rp → R
p×p and ω : Rp → R

psatisfy the estimates
Ω(u) = O(‖u − ū‖), ΠΩ(u) = O(‖u1 − ū1‖) +O(‖u − ū‖2),
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ω(u) = O(‖u− ū‖2), Πω(u) = O(‖u − ū‖‖u1 − ū1‖) +O(‖u− ū‖3).Then there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 su
h that any startingpoint u0 ∈ R

p \ {ū} satisfying
‖u0 − ū‖ ≤ ε,

∥

∥

∥

∥

u0 − ū

‖u0 − ū‖
− v̄

∥

∥

∥

∥

≤ δuniquely de�nes the sequen
e {uk} ⊂ R
p of the pNM, uk

2 6= ū2 for all k,the sequen
e {uk} 
onverges to ū, and
lim
k→∞

‖uk+1 − ū‖

‖uk − ū‖
=

1

2
, ‖uk+1

1 − ū1‖ = O(‖uk − ū‖2).Theorem above establishes the existen
e of a set with nonemptyinterior, whi
h is star-like with respe
t to ū, and su
h that the pNMinitialized at any point of this set 
onverges linearly to ū. Moreover, if Φis 2-regular at ū in at least one dire
tion v̄ ∈ kerΦ′(ū), then set of su
h
v̄ is open and dense in kerΦ′(ū)∩S: its 
omplement is the null set of thenontrivial homogeneous polynomial detΠΦ′′(ū)[·]|ker Φ′(ū) 
onsidered on
kerΦ′(ū)∩S. The union of 
onvergen
e domains 
oming with all su
h v̄ isalso a star-like 
onvergen
e domain with nonempty interior. In the 
asewhen Φ′(ū) = 0 (full singularity) this domain is quite large. In parti
ular,it is �asymptoti
ally dense�: its 
omplement is �asymptoti
ally thin�, andthe only ex
luded dire
tions are those in whi
h Φ is not 2-regular at ū,whi
h is the null set of a nontrivial homogeneous polynomial.The assumptions on perturbations in Theorem automati
ally hold if

Ω(u) = O(‖Φ(u)‖), ω(u) = O(‖u− ū‖‖Φ(u)‖).3. Levenberg�Marquardt methodThe L-MM is a well-established tool for ta
kling possibly nonisolatedsolutions. The iteration subproblem of this method has the formminimize 1

2
‖Φ(uk) + Φ′(uk)v‖2 +

1

2
σ(uk)‖v‖2, v ∈ R

p,where σ : Rp → R+ de�nes the regularization parameter. In parti
ular,from the results in [8℄ it follows that being initialized near a non
riti
alsolution, the L-MM with σ(u) = ‖Φ(u)‖2 generates a sequen
e whi
h isquadrati
ally 
onvergent to a (nearby) solution.



4 The L-MM subproblem is equivalent to the linear system
(Φ′(uk))TΦ(uk) + ((Φ′(uk))TΦ′(uk) + σ(uk)I)v = 0,
hara
terizing stationary points of that 
onvex optimization problem.From [5, Lemma 3.1℄ it 
an be seen that v̄ in Theorem applied tothe basi
 NM 
omes with a �
oni
 neighborhood� su
h that for every uin it, Φ′(u) is invertible, and (Φ′(u))−1 = O(‖u − ū‖−1). Multiplyingboth sides of the iteration system by (((Φ′(uk))T)−1 = (((Φ′(uk))−1)T,we now obtain

Φ(uk) + (Φ′(uk) + σ(uk)(((Φ′(uk))−1)T)v = 0,whi
h is the pNM iteration system with the perturbation terms
Ω(u) = σ(u)(((Φ′(u))−1)T = O(‖u− ū‖−1σ(u)), ω ≡ 0as u → ū, and therefore, the needed requirements on Ω will hold, e.g., if

σ(u) = ‖Φ(u)‖τ with τ ≥ 2.Moreover, in the 
ase when Φ′(ū) = 0 (full singularity) the appropri-ate values are all τ ≥ 3/2.
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Fig. 1. Levenberg�Marquardt method with τ = 1.Example. Consider the equality-
onstrained optimization problemminimize x2 subje
t to x2 = 0.Stationary points and asso
iated Lagrange multipliers of this problemare 
hara
terized by the Lagrange optimality system whi
h has the form
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Fig. 2. Levenberg�Marquardt method with τ = 3/2.of a nonlinear equation with Φ : R2 → R
2, Φ(u) = (2x(1+λ), x2), where

u = (x, λ). The unique feasible point (hen
e, the unique solution, andthe unique stationary point) of this problem is x̄ = 0, and the set ofasso
iated Lagrange multipliers is the entire R. Therefore, the solutionset of the Lagrange system (i.e., the primal-dual solution set) is {x̄}×R.The unique 
riti
al solution is ū = (x̄, λ̄) with λ̄ = −1, the one for whi
h
Φ′(ū) = 0 (full singularity).In Figures 1 and 2, the verti
al gray line 
orresponds to the primal-dual solution set. These �gures demonstrate some iterative sequen
esgenerated by the L-MM, and the domains from whi
h 
onvergen
e tothe 
riti
al solution was dete
ted.4. LP-Newton methodA more re
ent approa
h, alternative to the L-MM, is the LP-NM



6proposed in [2℄. The iteration subproblem of this method has the formminimize γsubje
t to ‖Φ(uk) + Φ′(uk)v‖ ≤ γ‖Φ(uk)‖2,
‖v‖ ≤ γ‖Φ(uk)‖,
(v, γ) ∈ R

p × R.With l∞ norm, this is a linear programming problem. As demonstratedin [2, 3℄, lo
al 
onvergen
e properties of the LP-NM (near non
riti
alsolutions!) are the same as for L-MM.The �rst 
onstraint in the LP-NM subproblem 
an be interpreted asthe pNM with Ω ≡ 0 and some ω(·), whi
h will satisfy the assumptionsin Theorem if the optimal value γ(u) of the LP-NM subproblem with
uk = u satis�es

γ(u) = O(‖Φ(u)‖−1‖u− ū‖)as u → ū.In order to establish the needed estimate on γ(·), suppose again that
u belongs to the �
oni
 neighborhood� of v̄ where the basi
 NM step v(u)is uniquely de�ned, and v(u) = O(‖u − ū‖). Then the point (v, γ) =
(v(u), ‖v(u)‖/‖Φ(u)‖) is feasible in the LP-N subproblem, and hen
e,

γ(u) ≤ γ = ‖Φ(u)‖−1‖v(u)‖ = O(‖Φ(u)‖−1‖u− ū‖)as u → ū.Figure 3 has the same meaning as Figure 2, but for LP-NM insteadof L-MM, with the same 
on
lusions.A detailed exposition of these results 
an be found in [6℄. The exten-sions of these and related results to 
onstrained equations 
an be foundin [1℄, [4℄. Referen
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