Critical solutions of nonlinear equations®

A F. Izmailov, A.S. Kurennoy, and M.V. Solodov
Moscow State University, Moscow, Russia,
Tambov State University, Tambov, Russia,

IMPA, Rio de Janeiro, Brazil

1. Introduction and the key assumption

We consider a nonlinear equation
®(u) =0,

where ® : R? — RP? is a given smooth mapping. Even though here we
deal solely with the case when the number of equations is the same
as the number of variables, it will never be assumed that the solution
in question is isolated, and moreover, the case of nonisolated solutions
will be of special interest. Observe that any nonisolated solution @ is
necessarily singular in a sense that ®'(@) is a singular matrix.

In [7], it was shown that a solution @ of the unconstrained equation
“survives” perturbations in large classes if ® is smooth enough, and there
exists U € ker ®’(u) such that ® is 2-regular at @ in the direction o, the
latter meaning that

im @' () + ®"(u)[v, ker &' ()] = RP.

Importantly, such ¥ may exist even if @ is a nonisolated solution.

Furthermore, as demonstrated in [7], if @ is a singular solution, the
needed ¢ cannot belong to Tg-1(0)(%), and hence it can never exist if
Tp-1(0)(2) = ker ®'(u). The latter is one of the two ingredients of the
concept of noncriticality of solution u, as introduced in [7] The second
ingredient is Clarke regularity of ®~1(0) at @, and as demonstrated in
[7], under the appropriate smoothness assumptions, this combination of
properties is equivalent to the local Lipschitzian error bound

dist(u, ®71(0)) = O(||®(w)|) as u € R? tends to ,

which is known to be equivalent to the following upper Lipschitzian
property:

dist(u(w), ®71(0)) = O(JJw||) as w € R tends to 0,
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where u(w) is any solution of the perturbed equation
P(u) = w,

close enough to @. In addition, the results in [7] imply that singular
noncritical solutions of the unconstrained equation can only be stable
subject to very special perturbations. At the same time, critical solutions
(i.e., those which are not noncritical), or, more precisely, those solutions
for which Tg-1(g) () is a proper subset of ker ®(u), can naturally satisfy
the 2-regularity condition with some @ € ker ®'(u), and hence, be stable
subject to wide classes of perturbations.

In this work, we demonstrate that 2-regularity in a direction v €
ker ®'(@) (which is our key assumption, and which may never hold at
noncritical singular solutions, as discussed above) makes @ specially
attractive for sequences generated by Newton-type methods. Apart form
the basic Newton method (NM), we will consider some modifications
of it, intended specially for tackling the case of nonisolated solution.
Specifically, these are the Levenberg-Marquardt method (L-MM) and
the LP-Newton method (LP-NM).

2. Perturbed Newton method

We define the perturbed Newton method (pNM) for equation in
question as follows: for a current iterate u* € RP, the next iterate is
uFtl = uF + 0¥ with v* computed as a solution of linear equation

®(u") + (' (u*) + Qb)) = w(u"),

where  : R? — RP*P and w : RP — RP characterizes perturbation.

The following can be regarded as an extension of [5, Lemma 5.1] from
the basic NM to pNM.

Every u € RP is uniquely decomposed into the sum u = wu; + us,
up € (ker ®'(@))*, us € ker ®(u). Let II be the orthogonal projector
onto (im ®'(%))+, and assume that the norm is Euclidian. Let S stand
for the unit sphere in RP.

Theorem. Let O be twice differentiable near u € RP, with its second
derivative Lipschitz-continuous with respect to u. Let @ be a solution of
the nonlinear equation in question, and assume that ® is 2-regular at u
in a direction v € ker ®' () N'S. Let Q : R? — RP*P gpd w : RP — RP
satisfy the estimates

Qu) = O(Ju —al)),  1Q(w) = O(|lur — @l]) + O(|u — al]*),
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w(u) = O(|lu—al®),  Tw(u) = O(llu —all|lur — @ll) + O(lu — al®).

Then there existe = £(0) > 0 and § = §(v) > 0 such that any starting
point u® € RP \ {u} satisfying

ud — 7 _

ol <6

lu® —af <, ]

[[u® — all

uniquely defines the sequence {u*} C R? of the pNM, uk # 1y for all k,
the sequence {u*} converges to i, and

k+1 _ 5
i 101 e 2 ot —al?).
oo Uk —a] 2

Theorem above establishes the existence of a set with nonempty
interior, which is star-like with respect to @, and such that the pNM
initialized at any point of this set converges linearly to u. Moreover, if ®
is 2-regular at @ in at least one direction v € ker ®'(u), then set of such
v is open and dense in ker ®'(@) N'S: its complement is the null set of the
nontrivial homogeneous polynomial det IT®” (@)[-]|xer () considered on
ker ®'(@)NS. The union of convergence domains coming with all such o is
also a star-like convergence domain with nonempty interior. In the case
when ®'(@) = 0 (full singularity) this domain is quite large. In particular,
it is “asymptotically dense”: its complement is “asymptotically thin”, and
the only excluded directions are those in which ® is not 2-regular at ,
which is the null set of a nontrivial homogeneous polynomial.

The assumptions on perturbations in Theorem automatically hold if

Qu) = O([[@(u)]));  w(u) = O(lu—ull[@w)])-

3. Levenberg—Marquardt method

The L-MM is a well-established tool for tackling possibly nonisolated
solutions. The iteration subproblem of this method has the form

1 1
minimize §||<I>(uk)—|—<1>'(uk)v||2—|—Eo(uk)||v||2, v e RP,

where o : RP — R defines the regularization parameter. In particular,
from the results in [8] it follows that being initialized near a noncritical
solution, the L-MM with o(u) = ||®(u)||? generates a sequence which is
quadratically convergent to a (nearby) solution.



The L-MM subproblem is equivalent to the linear system
(@ (u")T @ (u") + (@' (u?) @' (u*) + o (u*) v =0,

characterizing stationary points of that convex optimization problem.

From [5, Lemma 3.1] it can be seen that ¢ in Theorem applied to
the basic NM comes with a “conic neighborhood” such that for every u
in it, ®’(u) is invertible, and (®'(u))~! = O(||lu — 4[|~1). Multiplying
both sides of the iteration system by (((®/(u*))T)~! = (((®'(u*))~HT,
we now obtain

B(u®) + (' (u") + o (u®) (@' (M) ") o = 0,
which is the pNM iteration system with the perturbation terms
Qu) = o(u)(((®'(u) ™)' =O0(lu—al|"'o(w), w=0

as u — u, and therefore, the needed requirements on 2 will hold, e.g., if
o(u) = ||®(u)||” with 7 > 2.

Moreover, in the case when ®'(@) = 0 (full singularity) the appropri-
ate values are all 7 > 3/2.

Fig. 1. Levenberg—Marquardt method with 7 = 1.

Example. Consider the equality-constrained optimization problem

minimize 22 subject to 22 =0.

Stationary points and associated Lagrange multipliers of this problem
are characterized by the Lagrange optimality system which has the form
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Fig. 2. Levenberg-Marquardt method with 7 = 3/2.

of a nonlinear equation with ® : R? — R? ®(u) = (2z(1+\), 2?), where
u = (z, A). The unique feasible point (hence, the unique solution, and
the unique stationary point) of this problem is & = 0, and the set of
associated Lagrange multipliers is the entire R. Therefore, the solution
set of the Lagrange system (i.e., the primal-dual solution set) is {Z} x R.
The unique critical solution is @ = (Z, A) with A = —1, the one for which
®'(a) = 0 (full singularity).

In Figures 1 and 2, the vertical gray line corresponds to the primal-
dual solution set. These figures demonstrate some iterative sequences
generated by the L-MM, and the domains from which convergence to
the critical solution was detected.

4. LP-Newton method

A more recent approach, alternative to the L-MM, is the LP-NM
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proposed in [2]. The iteration subproblem of this method has the form

minimize vy

subject to || ®(u") + @' (u*)v]| < [ (u")||?,
[l < ~l[@@®)],
(v, v) € RP x R.

With [, norm, this is a linear programming problem. As demonstrated
in [2, 3], local convergence properties of the LP-NM (near noncritical
solutions!) are the same as for L-MM.

The first constraint in the LP-NM subproblem can be interpreted as
the pNM with Q = 0 and some w(+), which will satisfy the assumptions
in Theorem if the optimal value v(u) of the LP-NM subproblem with

k
() = 02w~ u ~ al)

u® = u satisfies

as u — u.

In order to establish the needed estimate on ~(-), suppose again that
u belongs to the “conic neighborhood” of © where the basic NM step v(u)
is uniquely defined, and v(u) = O(J]ju — @||). Then the point (v, y) =
(v(w), lv(w)]l/]|®(u )||) is feasible in the LP-N subproblem, and hence,

y(u) <y =12~ Hv(w)]l = O(|®(w)]| = |u — al)

as u — u.

Figure 3 has the same meaning as Figure 2, but for LP-NM instead
of L-MM, with the same conclusions.

A detailed exposition of these results can be found in [6]. The exten-
sions of these and related results to constrained equations can be found
in [1], [4]
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Fig. 3. LP-Newton method.
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