213

The problem of control for multirobot systems
Dedkov V.A., Kirsanov M.N.
Moscow, Moscow Power Engineering Institute
We consider the use of artificial intelligence (ant colony optimization algorithm and simulated annealing algorithm) in the “problem of multi-robot system visiting the assigned targets on the plane” using an inversion of algorithm. We also compare these algorithms.

1. Introduction
Swarm robotics is used in problems where the use of a single robot is ineffective or impossible.

One example of swarm robotics is mine clearing a large area. May be situations where it is desirable to perform the operation as soon as possible. It is clear that a group of robots will do it better than a single robot.

From the described problem occurs following a particular problem: the multi-robot system must visit all targets while minimizing some of the parameters for the selected criteria.

In this paper we examine methods of artificial intelligence (ant colony optimization algorithm and simulated annealing algorithm) in multi-robot system control in cases, where robots and targets are distributed on a horizontal rectangular field randomly and uniformly, depending on the various initial conditions of the problem (the number of robots and the number of targets).

The robot was given the task to visit all targets with minimal total path length and minimal total rotation angle. Robots are modeled by points.

2. Research methods
For research we model the behavior of a multi-robot system on the plane via the program written in the programming language GNU Octave.

On a rectangular field, we randomly placed robots (the larger diameter of the circle) and the targets (the smaller diameter of the circle) (Fig. 1).

We introduce a number of assumptions: the trajectory of the robot is polygonal line, the robots move with the same constant speed, at the turning points (at nodes of polygonal line) robot turns quickly, robots do not collide with each other, there is no obstacles to their movement, objects and robots are geometric points.
2.1. Description of research

Experiments were performed for

· 5 and 25 robots

· 10, 25, 50, 75 and 100 targets

on the field with size 100x100, with a single robot’s step 1.5.

We performed 3 experiments for every possible case, and then calculated the average value of the total path length and the total rotation angle of all robots. We entered data into the table and used it to plot.

All experiments were performed for two cases: the search for targets with the simulated annealing algorithm [1, 2] (SA) and the search for targets with the ant colony optimization algorithm [3, 4] (ACO).

The mean values of total paths length and rotation angles were plotted.

[image: image1.png]

Fig. 1 Screenshot of the display window of the program
3. Description of how the program works
I. The initial conditions of the problem are recorded in a data file (field size, the number of robots, the number of targets, location of robots and targets). The following steps are performed by reading the file.

II. While the number of robots is less than or equal to the number of targets (the number of targets is reduced when the robot reaches the goal), the following steps are performed:

1. For all robots a target is searched for one of the algorithms (ACO or SA, algorithm is specified when the program starts).

2. Each robot walks to the targets in the cycle. It looks like all the robots are moving to the targets at the same time: full cycle is one step of the group. The number of targets is reduced by the number of reached targets (if there are any).

3. If at least one of the robots from item II.2 reaches the target (note: item II.2 is the full cycle, not just one iteration), then we go to the item II.1 or to the item III (if the number of targets has become less than the number of robots).Otherwise, item II.2 continues.
III. Now the number of robots is greater than the number of goals. For program robots become targets and goals become robots: this is the inversion of algorithm (in the input of the algorithms ACO or SA we send updated coordinates of robots and targets). Looks like it's all the same as if the robots marching to targets. Subparagraphs of this item III repeat subparagraphs of item II. Item III is performed while the number of targets is greater than 0.

3.1. Description of the implementation of the simulated annealing algorithm
In the cycle of [image: image2.png]

 iterations the following steps are performed:

I. Two robots in the permutation are selected randomly.

II. Swap these two robots in the permutation.
III. Cycle through items in the permutation:
1. Look for the shortest path for each robot in the permutation.
2. Calculate the rotation angle for each robot in the permutation corresponding to the shortest path.

3. Calculate the total path length S and the total rotation angle for a current permutation.
IV. If the total path length and the total rotation angle decreased:

1. Set new coordinates (which are planning to return from the algorithm) for the robots in the values corresponding to the current permutation.

2. Take the current permutation of robots as a new permutation.

V. Otherwise, give a chance to the current permutation to become the new permutation:

1. Calculate the probability of choosing the worst decision by the formula
[image: image3.png]

([image: image4.png]

 is the minimum total path length for the current iteration).
2. If [image: image5.png]P<P,

, where [image: image6.png]

 is a random number, we take the current permutation of robots as a new permutation.
VI. Each freq-th iteration (number freq is the input parameter of the algorithm) reduce parameter T (conventional temperature) by the formula
[image: image7.png]Thsr = aTy,

,

(0<α <1 is also an input and controlled parameter of the algorithm).

3.2. Description of the implementation of the ant colony optimization algorithm
In the cycle of [image: image8.png]

 iterations the following steps are performed:

I. Two robots in the permutation are selected randomly.

II. Swap these two robots in the permutation.

III. Cycle through items in the permutation:

1. Look for the “ACO-path” for each robot in the permutation, using the formula for the transition probability robot on the [image: image9.png]

-th iteration of the main loop, from its vertex [image: image10.png]

 in the permutation to the vertex [image: image11.png]

 in the list of targets.
[image: image12.png]Py

aph
Tijiy

Sttt

here [image: image13.png]ij

is amount of pheromone left by the robot at the interval [image: image14.png][i,j]

; [image: image15.png];5

 is the inverse of the length of the interval [image: image16.png][i,j]

; [image: image17.png]

are empirical coefficients. Function [image: image18.png]P,
ik

 show the robot number of vertex [image: image19.png]

 to which it must go. Index [image: image20.png]

 in the sum passes over all not to be passed vertices adjacent to [image: image21.png]

.

Thus, for a robot [image: image22.png]k,i

 we make list of probabilities, corresponding to the vertices to which the robot can go. More likely the robot will go to vertex which corresponds to a high probability[image: image23.png]P,
ik

.

2. Set the increment of pheromone corresponding to ACO-path for each robot
[image: image24.png]dty; + Qny;

(Parameter [image: image25.png]

 is scale constant of the order of route length; it is chosen proportionally to order of graph).

3. Calculate the rotation angle for each robot in the permutation corresponding to the “ACO- path”.
4. Calculate the total path length and the total rotation angle for a current permutation.
IV. If the total path length and the total rotation angle decreased:
1. Set new coordinates (which are planning to return from the algorithm) for the robots in the values corresponding to the current permutation.

2. Take the current permutation of robots as a new permutation.

V. Update the pheromones:
1. Adding new tracks
[image: image26.png]it =Ty +ydTy;

2. The evaporation of pheromone
[image: image27.png])
-7
751

(0<[image: image28.png]

<1 is an input and controlled parameter of the algorithm).
4. Experimental results
The ACO-algorithm worked with the parameters [image: image29.png]0.7,a=2,=10

 on [image: image30.png]n=100

 iterations.
The SA-algorithm worked with the parameters [image: image31.png]freq =2, =08

 on [image: image32.png]n =60

 iterations.

Legend on the charts: S is the total distance traveled (sum paths traveled by each robot), Ang is the total rotation angle (angle sum, which turned each robot), and N is the number of targets. On each of the plots we have two dependencies: for the simulated annealing algorithm (SA) and the ant colony optimization algorithm (ACO).
4.1 Experimental results for 5 robots
Table 1. Total path length and the total rotation angle: results of experiments and mean values for 5 robots.

[image: image33.emf]
[image: image34.emf]
Fig. 2 Dependence on total path length of the number of targets for 5 robots.
[image: image35.emf]
Fig. 3 Dependence on total rotation angle of the number of targets for 5 robots.

4.2 Experimental results for 25 robots
Table 2. Total path length and the total rotation angle: results of experiments and mean values for 25 robots.

[image: image36.emf]
[image: image37.emf]
Fig. 4 Dependence on total path length of the number of targets for 25 robots.

[image: image38.emf]
Fig. 5 Dependence on total rotation angle of the number of targets for 25 robots.

5. Conclusion
In almost all cases, the algorithm SA has shown better results than the algorithm ACO. An interesting feature can be seen for 25 robots. When the number of targets is more than 75, the total path length and the total rotation angle start to decrease. This strange at first sight result is explained by the fact that the density of the robots on the plane becomes large enough, and each robot creates its own domain of targets: it does not have to go far for the targets.

References
[1] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated Annealing. Science 220 (4598) (1983): 671–680.

[2] Černý, V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications Vol. 45 (1985): 41–51.

[3] M. Dorigo, M. Birattari & T. Stützle, Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique. TR/IRIDIA/2006-023 (2006)
[4] Kirsanov M. N. Graphs in Maple. М.: Fizmatlit, 2007. 87 – 90. (in rus)
