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Motivation

Stability of linear dynamical system with periodic parameters

ẋ(t) = J(t) x(t),

x(t) is the state variable vector
J(t) is a T -periodic J(t) = J(t + T ), piecewise continuous, and
integrable matrix.

Stability of periodic solutions of nonlinear dynamical system
Lyapunov second method amounts to checking the stability of
linearized system

ẋ(t) = J(t) x(t),

x(t) is the vector of perturbations corresponding to the state
variables
J(t) is the Jacobian matrix of an originally nonlinear system.



Stability of linear systems with periodic coefficients

G. Floquet,
Sur les équations différentielles linéaires à coefficients
périodiques.
Annales scientifiques de l’École normale supérieure 12 (1883)
47–88.



General stability, Floquet (1883)

Ẋ(t) = J(t) · X(t), X(0) = I. (1)

Monodromy matrix F is the fundamental matrix at time t = T :

F = X(T )

Floquet multipliers ρ = eig(F) are the eigenvalues of the
monodromy matrix.

|ρi | < 1 ∀ i ⇐⇒ asymptotic stability.
∃ i : |ρi | > 1 =⇒ instability.



Excitation smallness assumption

Let there exists autonomous matrix J0, such that the residual
J(t)− J0 is small and can be represented as the series

J(t)− J0 = J1(t) + J2(t) + J3(t) + . . . ,

where the lower index denotes the order of smallness.



Transformation

The change of variables X(t) = exp(J0t) · Y(t) converts matrix
differential equation (1) into the form:

Ẏ(t) = H(t) · Y(t), Y(0) = I, (2)

where matrix

H(t) := exp(−J0t) · (J(t)− J0) · exp(J0t)

is small.
Approximate solution of (2) can be found with the use of averaging
scheme.



Averaging
Let

H(t) = H1(t) + H2(t) + H3(t) + . . . , (3)

where Hj(t) := exp(−J0t) · Jj(t) · exp(J0t).
We will find solution in the form

Y(t) = (I + U1(t) + U2(t) + . . .) · Z(t), (4)

where Uj(t) are T -periodic matrix-functions, such that
Uj(0) = Uj(T ) = 0, and Z(t) is the solution of the averaged
differential equation:

Ż(t) = (A1 + A2 + A3 + . . .) · Z(t), Z(0) = I, (5)

which can be written via the matrix exponential
Z(t) = exp ([A1 + A2 + A3 + . . .] t). Hence due to Y(T ) = Z(T )

F = X(T ) = F0 · Y(T ) = F0 · Z(T ), (6)

where we denote F0 := exp(J0T ) as zero order approximation of
monodromy matrix, F ≈ F0.



Averaging

Ẏ(t) = H(t) · Y(t), Y(0) = I, (2)

H(t) = H1(t) + H2(t) + H3(t) + . . . , (3)

Y(t) = (I + U1(t) + U2(t) + . . .) · Z(t), (4)

Ż(t) = (A1 + A2 + A3 + . . .) · Z(t), Z(0) = I, (5)

The matrices Aj and matrix-functions Uj(t) can be found one by
one substituting expressions for time derivatives from (3)–(5) into
(2), collecting there terms of the same order and canceling
non-degenerate matrix Z.

Monodromy matrix

F = F0 · exp ([A1 + A2 + A3 + . . .]T ) , (6)

где F0 := exp(J0T ).



Zero approximation of monodromy matrix

F0 := exp(J0T ).



First order approximation of monodromy matrix

F ≈ F0 · (I + A1T )

where

A1 =
1
T

∫ T

0
H1(t) dt (7)

and H1(t) := exp(−J0t) · J1(t) · exp(J0t).
Hence

F ≈ exp(J0T ) ·
(

I +

∫ T

0
exp(−J0t) · J1(t) · exp(J0t) dt

)
.



Second order approximation of monodromy matrix

U1(t) =

∫ t

0
(H1(τ)− A1) dτ,

A2 =
1
T

T∫
0

(H2(t) + H1(t) ·U1(t)−U1(t) · A1) dt, (8)

where we use matrix A1, calculated (7),
H2(t) := exp(−J0t) · J2(t) · exp(J0t).
Expansion of the matrix exponential in (6) up to the second order
terms yields

F ≈ F0 ·
(

I + A1T + A2T +
1
2
A2

1T
2
)
.



Third order approximation of monodromy matrix
Using A2 and U1(t) from (8), we calculate:

U2(t) =

t∫
0

(H2(τ)− A2

+H1(τ) ·U1(τ)−U1(τ) · A1) dτ,

A3 =
1
T

T∫
0

(H3(t)

+H2(t) ·U1(t)−U1(t) · A2

+H1(t) ·U2(t)−U2(t) · A1) dt.

where H3(t) := exp(−J0t) · J3(t) · exp(J0t).

F ≈ F0 ·
(
I + A1T

+ A2T +
1
2
A2

1T
2

+ A3T +
1
2

(A1 · A2 + A2 · A1)T 2 +
1
6
A3

1T
3
)
,

and so on . . .



Derivatives of monodromy matrix with respect to parameters

Similar relations one can obtain with the use of derivatives
(Seyranian, Solem, Pedersen (1999) Arch.Appl.Mech.)

∂F
∂pj

= F
∫ T

0
X−1 ∂J

∂pj
X dt.



Inverted pendulum with oscillating pivot

Seyranian, A.A., Seyranian, A.P.
The stability of an inverted pendulum with a vibrating
suspension point.
Journal of Applied Mathematics and Mechanics 70, 754–761
(2006)



Pendulum with vertically oscillating pivot I

Nonlinear system

d
dτ

(
m l2

dθ
dτ

)
+ γl2

dθ
dτ

+ m l

(
g + a

d2

dτ2ϕ(Ωτ)

)
sin θ = 0

l – length
m – mass,
ϕ – 2π-periodic twice-differentiable function,
a – amplitude of pivot oscillations,
Ω0 =

√
g
l – frequency, а T0 = 2π/Ω0 – period of small oscillations

without excitation,
γ – viscous friction coefficient.



Inverted pendulum with oscillating pivot I

Three dimentionless parameters

ε =
a

l
, ω =

Ω0

Ω
=

T

T0
, β =

γ

mΩ0
,

Dimentionless equations (in new time t = Ωτ)

θ̇ = s, ṡ = −βωs −
(
ω2 + εϕ̈(t)

)
sin(θ),

where s – angular velocity, dot is the derivative w.r.t. t.

Equations linearized about (θ, s) = (π, 0)

ẋ(t) = J(t) x(t), J(t) =

(
0 1

ω2 + εϕ̈(t) −βω

)
.



Inverted pendulum with oscillating pivot II

Multipliers
Eigenvalues ρ1 и ρ2 of monodromy matrix are defined by
characteristic polynomial:

ρ2 − tr(F) ρ+ det(F) = 0. (1)

Stability conditions (|ρ1| ≤ 1 и |ρ2| ≤ 1)
For real roots ρ ∈ [−1, 1], and for complex conjugate roots
ρ1ρ2 ≤ 1. From (1) and Vieta’s formula ρ1ρ2 = det(F) we obtain:

| tr(F)| ≤ 1 + det(F) и det(F) ≤ 1, (2)

where for asymptotic stability all inequalities should be strict.



Inverted pendulum with oscillating pivot III

Express matrix as series J(t) = J0 + J1(t) + J2, where

J0 =

(
0 1
0 0

)
, J1(t) =

(
0 0

εϕ̈(t) 0

)
, J2 =

(
0 0
ω2 −βω

)
,

assuming ε, ω, and β small of the same order.

exp(J0t) =

(
1 t
0 1

)
, exp(−J0t) =

(
1 −t
0 1

)
.

Zero approximation

F ≈ exp(J02π) =

(
1 2π
0 1

)
.



Inverted pendulum with oscillating pivot IV

First approximation

F ≈
(

1 2π
0 1

)
+ ε

(
π2 0
0 −π2

)
.

Second approximation

F ≈
(

1 2π
0 1

)
+ ε

(
π2 0
0 −π2

)
+

(
−1

6π
4ε2 + 2π2ω2 − 1

15π
5ε2 + 4

3π
3ω2 − 2π2βω

−2
3π

3ε2 + 2πω2 −1
6π

4ε2 + 2π2ω2 − 2πβω

)
.



Stability boundaries in the second and third approximations

εp =
2
√
3

π
ω,

εn =
2
√
3

π

√
ω2 − βω

π
+

1
π2 .



Stability boundaries in the fourth approximation

π8ε4

1260
− π4

3

(
1 +

4π2ω2

15
− πβω

)
ε2 + 4π2ω2

(
1 +

π2ω2

3
− βωπ

)
= 0,

π8ε4

1260
− π4

3

(
1 +

4π2ω2

15
− πβω

)
ε2 + 4π2ω2

(
1 +

π2ω2

3
− βωπ

)
+

+4
(
1− βπω + π2ω2β2) = 0



Comparison of approximate and exact stability boundaries

Figure: Stability boundaries in the third approximation (dashed lines) and
the fourth approximation (solid lines) in comparison with exact stability
domains (gray).



Damping stabilization and destabilization of inverted vertical pendulum position

Figure: Addition of small linear viscous friction β shifts both stability
boundaries upward. Thus, at the lower boundary additional friction
destabilizes the inverted pendulum while at the upper boundary friction
stabilizes the pendulum position.



Discussion on accuracy of stability borders

For instance, the eigenvalue problem with the matrix:

J =

(
0 1

O(ε) 0

)
has the characteristic equation

λ2 − O(ε) = 0,

so that the double zero eigenvalue,

λ = O(
√
ε),

is determined up to a small summand of the order of smallness half
of that of the matrix.
Hence, n-multiplicity of eigenvalue can decrease the order of its
approximation at most n-times with respect to the order of
approximation of the matrix.
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