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Abstract. We discuss a globalization scheme for a class of active-set Newton methods for

solving the mixed complementarity problem (MCP), which was proposed by the authors in [3].

The attractive features of the local phase of the method are that it requires solving only one system of

linear equations per iteration, yet the local superlinear convergence is guaranteed under extremely

mild assumptions, in particular weaker than the property of semistability of an MCP solution. Thus

the local superlinear convergence conditions of the method are weaker than conditions required

for the semismooth (generalized) Newton methods and also weaker than convergence conditions

of the linearization (Josephy–Newton) method. Numerical experiments on some test problems

are presented, including results on the MCPLIB collection for the globalized version.
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1 Introduction

Themixed complementarity problem(MCP) [9] is the variational inequality on

a generalized box, that is

find x ∈ B such that〈F(x), y − x〉 ≥ 0 for all y ∈ B, (1.1)
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whereF : Rn → Rn and

B = {x ∈ Rn | l i ≤ xi ≤ ui , i = 1, . . . , n},

l i ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, l i < ui for all i = 1, . . . , n. Equivalently, it

can be stated as

find x ∈ B such thatFi (x)






≥ 0, if xi = l i ,

= 0, if xi ∈ (l i , ui ),

≤ 0, if xi = ui ,

i = 1, . . . , n.

As is well known, many important problems can be cast in the format of MCP

[11, 9]. As a special case of MCP, we mention the nonlinear complementarity

problem (NCP), which corresponds to settingl i = 0, ui = +∞, i = 1, . . . , n.

The systems of nonlinear equations are obtained by choosingl i = −∞, ui =

+∞, i = 1, . . . , n. Another important example is the primal-dual Karush-

Kuhn-Tucker (KKT) optimality system: findz ∈ Rp andμ ∈ Rm such that

g(z)− (G′(z))Tμ = 0,

μ ≥ 0, G(z) ≥ 0, 〈μ, G(z)〉 = 0,
(1.2)

whereg : Rp → Rp andG : Rp → Rm. The KKT system (1.2) can be written

as an MCP if we setn = p + m and

F(x) =

(
g(z)− (G′(z))Tμ

G(z)

)

, x = (z, μ) ∈ Rp × Rm,

l i = −∞, i = 1, . . . , p, l i = 0, i = p + 1, . . . , n, ui = +∞, i = 1, . . . , n.

Under well-known assumptions, (1.2) represents the first-order primal-dual ne-

cessary conditions characterizing solutions in variational inequality or inequality-

constrained optimization problems.

This paper describes a globalization scheme for a local Newton-type method

for solving MCP, which was proposed by the authors in [3]. Also numerical

experiments will be reported on problems from the MCPLIB collection [4],

together with results on some additional test examples.

The algorithm of [3] belongs to the class ofactive-setmethods, which is

related to the idea of identifying active constraints in (inequality-)constrained

optimization. The importance of identifying active constraints in optimization is
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well recognized, since it allows one to locally reduce the problem to an equality-

constrained one, the latter being structurally significantly easier. For some iden-

tification techniques we refer the reader to [8, 17, 6] for the case of nonlinear

constraints, and to [5, 7] for linear (complementarity) problems. The linear case,

of course, is very special: correct identification is easier and can often be obtai-

ned (relatively) far from a solution. In the nonlinear case, correct identification is

in general quite local. That said, optimization algorithms usually try to identify

the correct set “early” (even if the identification cannot be provably correct).

The intended use of identification in our method is somewhat different. We view

it as a strictly local phase and see no reason of even trying it when far from a

solution (i.e., outside of the region where forcing quadratic convergence can be

expected). For this purpose, our method has some checks that prevent switching

to the local active-set phase, unless there are reasons to believe that we are really

close to a solution.

A few words about our notation. Given a finite setI , |I | stands for its cardina-

lity. By R(m, n) we denote the space ofm× n matrices with real entries. ByE

we shall denote the identity matrix whose dimension would be always clear from

the context. Forx ∈ Rn and an index setI ⊂ {1, . . . , n}, xI stands for the vector

with componentsxi , i ∈ I . For a linear operator3, im3 is its range (image

space), and ker3 is its kernel (null space). For a directionally differentiable

mappingφ : Rn → Rm, by φ′(x; d) we denote the usual directional derivative

of φ at x ∈ Rn in the directiond ∈ Rn. If {zk} is a sequence inRp and{tk} is

a sequence inR such thattk → 0+ ask → ∞, by zk = o(tk) we mean that

limk→∞ ‖zk‖/tk = 0.

2 The local active-set method

In the context of MCP, active-set strategy corresponds to identifying the sets of

indices

A = A(x̄) = {i = 1, . . . , n | Fi (x̄) = 0},

N = N(x̄) = {i = 1, . . . , n | Fi (x̄) 6= 0},

Nl = Nl (x̄) = {i ∈ N | x̄i = l i },

Nu = Nu(x̄) = {i ∈ N | x̄i = ui },
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wherex̄ is some solution of MCP. If the specified sets can be correctly identified

using information available at a pointx close enough to the solutionx̄, then locally

MCP can be reduced to a system of nonlinear equations (which is structurally a

much simpler problem to solve). In the sequel, we shall also use the following

partitioning of the set of active indices:

A0 = A0(x̄) = {i ∈ A | x̄i = l i or x̄i = ui },

A+ = A+(x̄) = {i ∈ A | x̄i ∈ (l i , ui )},

A0l = A0l (x̄) = {i ∈ A0 | x̄i = l i },

A0u = A0u(x̄) = {i ∈ A0 | x̄i = ui }.

The analog of the strict complementarity condition in NCP (or KKT) corres-

ponds, in the setting of MCP, to saying thatA0 = ∅. Under this assumption,

locally MCP trivially reduces to a system of nonlinear equations, which simplifies

the local structure of MCP significantly. The condition of strict complementarity,

however, is restrictive and will not be assumed.

Letψ : R× R → R be acomplementarity function, i.e., a function such that

ψ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Assume thatψ satisfies the following additional assumptions:

a > 0, b < 0 ⇒ ψ(a, b) < 0,

a > 0, b > 0 ⇒ ψ(a, b) > 0.

Then MCP can be equivalently reformulated as a system of nonlinear equations

9(x) = 0, (2.1)

where

9 : Rn → Rn, 9i (x) =






Fi (x), if i ∈ I F ,

ψ(xi − l i , Fi (x)), if i ∈ Il ,

−ψ(ui − xi ,−Fi (x)), if i ∈ Iu,

ψ(xi − l i ,−ψ(ui − xi ,−Fi (x))), if i ∈ Ilu,

Comp. Appl. Math., Vol. 24, N. 2, 2005
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I F = {i = 1, . . . , n | −∞ = l i , ui = +∞},

Il = {i = 1, . . . , n | −∞ < l i , ui = +∞},

Iu = {i = 1, . . . , n | −∞ = l i , ui < +∞},

Ilu = {i = 1, . . . , n | −∞ < l i , ui < +∞}.

For some special choices of complementarity functions, this reformulation is

well-known (see, e.g., [1, 10]).

Complementarity functions to be used in the sequel are the natural residual

ψN R(a, b) = min{a, b},

the Fischer-Burmeister function

ψFB(a, b) = a + b −
√

a2 + b2,

and

ψS(a, b) = 2ab− (min{0,a + b})2,

whereSstands for “smooth”. Note that each of the three functions satisfies the

conditions stated above.

The corresponding reformulations of MCP would be denoted by9N R, 9FB

and9S, respectively.

The identification of relevant active index sets would be based onerror bound

analysis, which we describe next.

Definition 2.1. Let 9 : Rn → Rn be differentiable in a neighbourhood of

x̄ ∈ Rn and9 ′ : Rn → R(n, n) be directionally differentiable at̄x. Then9 is

2-regularat x̄ if

T = {0},

where

T = T(x̄) = {ξ ∈ ker9 ′(x̄) | (9 ′)′(x̄; ξ)ξ ∈ im9 ′(x̄)}

= {ξ ∈ ker9 ′(x̄) | P(9 ′)′(x̄; ξ)ξ = 0},
(2.2)

with P being the orthogonal projector onto(im9 ′(x̄))⊥.

The above is a special case of 2-regularity of a nonlinear mapping [13, 12]

corresponding to the case when the mapping acts from some space into itself.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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Theorem 2.1 [3, Theorem 2.2]. Let F : Rn → Rn be sufficiently smooth near

a point x̄ ∈ Rn, which is a solution of MCP.

The mapping9S is 2-regular atx̄ if, and only if, there exist a neighborhoodU

of x̄ and a constantM > 0 such that

‖x − x̄‖ ≤ M(‖(E − P)9S(x)‖ + ‖P9S(x)‖
1/2) ∀ x ∈ U. (2.3)

Adjusting M andU , if necessary, the error bound (2.3) can be simplified into

the following relation (less accurate, but usually easier to use):

‖x − x̄‖ ≤ M‖9S(x)‖
1/2 ∀ x ∈ U. (2.4)

The assumption of 2-regularity above is extremely mild. In particular, it is

strictly weaker than various alternatives, such assemistability[2] of the MCP

solution (which is already a very mild condition, weaker than strong regularity

or quasi-regularity). Specifically, we have the following.

Proposition 2.1 [3, Proposition 2.3]. Semistability of a solution̄x of MCP

implies 2-regularity of9S at x̄ (equivalently, error bound(2.3)), but not vice

versa.

As a consequence, the error bound given above can hold even when MCP

reformulations based on9N R and9FB fail to provide a bound (the latter bounds

can be shown to be equivalent to semistability).

The following technique for identifying the relevant index sets is based on the

ideas of [6], see also [9, Ch. 6.7]. Define theidentification function

ρ : R+ → R, ρ(t) =






ρ̄, if t ≥ t̄,

−1/ log t, if t ∈ (0, t̄),

0, if t = 0,

wheret̄ ∈ (0, 1) andρ̄ > 0 are fixed numbers (the choice oft̄ andρ̄ does not

affect theoretical analysis; in our numerical experiments reported in Section 3,

we uset̄ = 0.9 andρ̄ = −1/ log t̄ , as suggested in [6]). For anyx ∈ Rn, define

Comp. Appl. Math., Vol. 24, N. 2, 2005
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further the index sets

A(x) = {i = 1, . . . , n | |Fi (x)| ≤ ρ(‖9S(x)‖)}, (2.5)

N(x) = {1, . . . , n} \ A(x), (2.6)

Nl (x) = {i ∈ N(x) | xi − l i ≤ ui − xi }, Nu(x) = N(x) \ Nl (x), (2.7)

A0(x) = {i ∈ A(x) | min{|xi − l i |, |ui − xi |} ≤ ρ(‖9S(x)‖)},

A+(x) = A(x) \ A0(x), (2.8)

A0l (x) = {i ∈ A0(x) | xi − l i ≤ ui − xi },

A0u(x) = A0(x) \ A0l (x). (2.9)

Proposition 2.2 [3, Proposition 3.1]. If 9S is 2-regular at a solution̄x of MCP

(equivalently, the error bound(2.3) holds), then for anyx ∈ Rn sufficiently close

to x̄, it holds that

A(x) = A, N(x) = N, Nl (x) = Nl , Nu(x) = Nu, (2.10)

A0l (x) = A0l , A0u(x) = A0u, A0(x) = A0, A+(x) = A+. (2.11)

Observe that in the implementation of the identification procedure, the fol-

lowing obvious relations can also be taken into account:

I F ⊂ A+, Il ⊂ (A0l ∪ A+ ∪ Nl ), Iu ⊂ (A0u ∪ A+ ∪ Nu).

Once the index sets are correctly identified, we have the following relations

which are guaranteed to be satisfied at a solutionx̄ of MCP:

FA(x) = 0, xA0l ∪Nl = l A0l ∪Nl , xA0u∪Nu = uA0u∪Nu .

For simplicity of notation, suppose that the components ofx ∈ Rn are ordered

in such a way thatx = (xA+, xA0l ∪Nl , xA0u∪Nu). Then MCP locally reduces to

the following system of nonlinear equations:

FA
(
xA+, l A0l ∪Nl , uA0u∪Nu

)
= 0. (2.12)

Observe that in the absence of strict complementarity (whenA0 6= ∅, i.e.,

|A| > |A+|), the system is over-determined (the number of equations is lar-

ger than the number of unknowns). This opens up a number of options. Of

Comp. Appl. Math., Vol. 24, N. 2, 2005
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course, one can just solve the system by the Gauss–Newton method (GNM).

This possibility will be considered. However, we prefer not to limit ourselves to

GNM for the following reason: the Gauss–Newton approach can destroy struc-

ture present inFA (for example, sparsity or the primal-dual structure in the case

of KKT).

Our proposal is to consider the following system of nonlinear equations:

8C

(
xA+

)
= 0, (2.13)

where

8C : R|A+| → R|A+|, 8C
(
xA+

)
= C

(
xA+

)
FA

(
xA+, l A0l ∪Nl , uA0u∪Nu

)
,

with C : R|A+| → R(|A+|, A) being a smooth mapping (possibly constant).

Clearly, x̄A+ is a solution of (2.13) for any choice ofC. The Jacobian of (2.13)

at this solution is given by

8′
C

(
x̄A+

)
= C

(
x̄A+

) ∂FA

∂xA+

(x̄), (2.14)

where we have taken into account thatFA(x̄) = 0. Thus x̄A+ can be found

by applying Newton-type methods to (2.13) whenever the matrix in (2.13) is

nonsingular.

Note that GNM for (2.12) would essentially correspond to choosing in (2.13)

C
(
xA+

)
=

(
∂FA

∂xA+

(
xA+, l A0l ∪Nl , uA0u∪Nu

)
)T

, (2.15)

and applying to the resulting system an approximate version of the pure Newton

method. Indeed, with the notation of (2.15), the Gauss–Newton iteration for

(2.12) has the form

xk+1
A+

= xk
A+

−
(

C
(

xk
A+

) ∂FA

∂xA+

(
xk

A+
, l A0l ∪Nl , uA0u∪Nu

))−1

8C

(
xk

A+

)
. (2.16)

Observe that the above formula is just an approximation of the standard Newton

iteration for (2.13), where the Jacobian8′
C

(
xk

A+

)
is replaced by

C
(

xk
A+

) ∂FA

∂xA+

(
xk

A+
, l A0l ∪Nl , uA0u∪Nu

)
.
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Due to (2.14), this change preserves the superlinear convergence of the pure

Newton iteration for (2.13). Note finally that with the choice of (2.15), we have

8′
C(x̄A+) =

(
∂FA

∂xA+

(x̄)

)T
∂FA

∂xA+

(x̄). (2.17)

This immediately motivates the following definition.

Definition 2.2. A solution x̄ of MCP is referred to asweakly regularif

rank
∂FA

∂xA+

(x̄) = |A+|.

Weak regularity is implied by semistability, but not vice versa. Moreover,

2-regularity of9S at x̄ and weak regularity, when combined, are still a strictly

weaker condition than semistability.

Proposition 2.3 [3, Proposition 3.3]. Let x̄ be a solution of MCP. Then semis-

tability of x̄ implies weak regularity of̄x, but not vice versa.

Proposition 2.4 [3, Proposition 3.4]. Let x̄ be a solution of MCP. Then se-

mistability of x̄ implies the combination of 2-regularity of9S at x̄ and weak

regularity of x̄, but not vice versa.

We have thus a local algorithm with superlinear convergence under assump-

tions weaker than semistability of the MCP solution. Specifically, we have the

following.

Theorem 2.2 [3, Theorem 3.5]. Let F : Rn → Rn be sufficiently smooth near

a point x̄ ∈ Rn, which is a solution of MCP. Suppose that this solution is weakly

regular and9S is 2-regular atx̄.

For any x0 ∈ Rn sufficiently close tox̄, if the index setsA = A(x0),

A+ = A+(x0), A0l = A0l (x0), A0u = A0u(x0), Nl = Nl (x0) and Nu = Nu(x0)

are defined according to(2.5)-(2.9), then GNM applied to the system(2.12)

(with x0
A+

as a starting point) is well-defined and superlinearly convergent

to x̄A+ .

Comp. Appl. Math., Vol. 24, N. 2, 2005
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As already mentioned above, it sometimes can be useful to choose the mapping

C differently from the Gauss–Newton option of (2.15). We might want to take

C(∙) = C ∈ R(|A+|, |A|), a fixed matrix, in order to preserve in the matrix

C
∂FA

∂xA+

(
xA+, l A0l ∪Nl , uA0u∪Nu

)

the structure (primal-dual, sparsity, etc.) of the matrix

∂FA

∂xA+

(
xA+, l A0l ∪Nl , uA0u∪Nu

)
.

This motivates the following considerations.

Proposition 2.5 [3, Proposition 3.6]. Suppose that a solution̄x of MCP is

weakly regular.

Then the set of matricesC ∈ R(|A+|, |A|) such that8′
C(x̄A+) is nonsingular

is open and dense inR(|A+|, |A|).

In the situation of weak regularity of the solution, Proposition 2.5 justifies

choosingC in any desirable way, as the chance that the resulting system would

be degenerate is negligible (the set of matrices for which this would happen is

of the Lebesgue measure zero). Of course, one should make reasonable choices.

For example, it should hold that rankC = |A+|.

3 Globalization issues and numerical experiments

In this section we report on our numerical experience based on the MCPLIB

test problems collection (the newer version of [4]), and on some additional small

examples, designed to highlight the case where various standard regularity condi-

tions do not hold, and thus the semismooth (generalized) Newton based methods

(SNM) may have trouble or converge slowly. This is precisely the case where

the switch to our local algorithm can be particularly useful.

To perform numerical experiments, we had to implement our method as a final

stage of some globally convergent scheme. It seems difficult to suggest a globally

convergent scheme directly related to the structure of our local algorithm. In some

sense, this is a disadvantage. But on the other hand, our local approach can be

combined withanyglobally convergent algorithm satisfying some requirements

Comp. Appl. Math., Vol. 24, N. 2, 2005
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(see below). In fact, the way we suggest to use our active-set method is precisely

for improving the local convergence properties of standard algorithms (say, when

they run into difficulties because of the lack of regularity of a solution). Our

numerical experiments, reported below, indicate that the resulting strategy fulfills

the stated objective.

We now describe the basichybrid globalization schemeand its convergence

properties. The scheme employs the linear decrease test for some (computable)

merit functionϕ : Rn → R+. Possible choices of a global algorithm andϕ are

restricted by the following assumptions:

(A1) ϕ(x) = 0 if, and only if,x ∈ Rn is a solution of MCP.

(A2) ϕ decreases monotonically along the trajectories of the global algorithm.

(A3) ϕ decreases superlinearly along the trajectories of our local method near

“qualified” solutions, i.e., solutions satisfying the assumptions of the local

convergence theorem for our method (Theorem 2.2).

Our choice of a global algorithm and a merit function, as well as the full method,

would be stated later. We first give a simplified general discussion.

At each iterationk of the global algorithm, we first identify the relevant index

sets. If there is a reason to believe that the identification is correct (e.g., if it did

not change when compared to the previous iteration), then we compute the trial

point x̃k+1
A+

by the step of GNM applied to (2.12) atxk
A+

, and set the remaining

components ofx̃k+1 ∈ Rn equal to the corresponding components ofl A0l ∪Nl

and uA0u∪Nu . If x̃k+1 is well-defined and

ϕ(x̃k+1) ≤ qϕ(xk), q ∈ (0, 1), (3.1)

then we setxk+1 = x̃k+1, and proceed with the next iteration. Otherwise, we

compute xk+1 by the step of the global algorithm, and proceed with the next

iteration.

If the linear decrease test (3.1) is satisfied for a finite number of iterations only,

the hybrid globalization scheme behaves essentially as the global algorithm, and

the global convergence properties of the latter remain valid. Otherwise, taking

into account assumption (A2), we conclude that

ϕ(xk+1) → 0 ask → ∞,

Comp. Appl. Math., Vol. 24, N. 2, 2005
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and in particular, according to assumption (A1), each accumulation point of the

sequence{xk} is a solution of MCP. This characterizes the global convergence

properties of the hybrid scheme.

Suppose now that a “qualified” solution̄x of MCP is an accumulation point

of {xk}. Then, by assumption (A3), the linear decrease test (3.1) is satisfied

for all iteration indicesk sufficiently large. Furthermore, it is easy to see that

the hybrid scheme eventually switches to our local algorithm (with the “starting

point” sufficiently close tōx). Hence, by Theorem 2.2, the entire sequence{xk}

converges tōx superlinearly.

In our numerical experiments we adopt the following choices. As a global

algorithm, we use the linesearch-SNM for (2.1) with9 = 9FB. More preci-

sely, we essentially follow the implementation suggested in [15] (“General Line

Search Algorithm”), with all the parameter values adopted there. Furthermore,

we takeϕ = ϕFB, where

ϕFB : Rn → R, ϕFB(x) =
1

2
‖9FB(x)‖

2.

We emphasize that this is just one example of the various appropriate choices. But

this particular algorithm seems reasonable for our purposes. Linesearch SNM is

known to be quite efficient, and at the same time, it is easy to implement in its

basic form. We note that we do not use any enhancements, such as crashing and

nonmonotone linesearch (see, e.g., [16]). The reason is that these are intended

to improve global behavior of the algorithm, while we are concerned with local

behavior. Thus a simple implementation of the global scheme is sufficient for our

purposes, as our principal conclusions refer to the local convergence properties.

Assumptions (A1) and (A2) are evidently satisfied for the adopted choices. In

order to guarantee (A3), we need to assume the error bound

‖x − x̄‖ = O(‖9FB(x)‖). (3.2)

Recall that this bound is equivalent to semistability. Under this assumption,

for x0 ∈ Rn close enough to a “qualified” solution̄x, and the corresponding

Comp. Appl. Math., Vol. 24, N. 2, 2005
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trajectory{xk} of the local method, we have

ϕFB(x
k+1) =

1

2
‖9FB(x

k+1)−9FB(x̄)‖
2

= O(‖xk+1 − x̄‖2)

= o(‖xk − x̄‖2)

= o(‖9FB(x
k)‖2)

= o(ϕFB(x
k)),

where the second equality is by the Lipschitz-continuity of9FB nearx̄, the third

is by Theorem 2.2, and the fourth is by (3.2). Thus, assumption (A3) is satisfied.

We proceed with the formal statement of the algorithm. Variable “Alg” below is

used to select between the two variants of the algorithm that would be compared

to each other. Alg= 1 means that the possibility of switching to our step is

blocked, and so the algorithm works as the usual linesearch SNM/FB from [15].

Alg = 2 corresponds to the proposed active-set strategy. Note however that

switching to an active-set step is forbidden on the first iteration, and also in the

case when the identified index sets differ from the corresponding index sets at the

previous iteration. This is done in order to prevent the algorithm from switching

to the active-set strategy too early, when the sets are not yet stabilized and are

likely to give incorrect identification.

Algorithm 3.1

Preliminary step. Set Alg= 1 or 2. Fixq, ε, τ ∈ (0, 1), δ, γ > 0. Set

k = 0 and choosex0 ∈ Rn.

Initialization step. If Alg = 1 or k = 0, go toSNM/FB step .

Otherwise define the index setsA = A(xk), Nl = Nl (xk), Nu = Nu(xk),

A+ = A+(xk), A0l = A0l (xk), A0u = A0u(xk) according to (2.5)–(2.9). If at

least one of these sets does not coincide with its counterpart computed at the

previous iteration, go toSNM/FB step .
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GNM/active-set step. Computex̃k+1 ∈ Rn as follows:

x̃k+1
A+

= xk
A+

−

((
∂FA

∂xA+

(xk)

)T
∂FA

∂xA+

(xk)

)−1

∂FA

∂xA+

(xk)FA(x
k
A+
, l A0l ∪Nl , uA0u∪Nu),

x̃k+1
A0l ∪Nl

= l A0l ∪Nl , x̃k+1
A0u∪Nu

= uA0u∪Nu .

(3.3)

If this point is well-defined and

ϕFB(x̃
k+1) ≤ qϕFB(x

k), (3.4)

setxk+1 = x̃k+1, adjustk by 1, and go toInitialization step .

SNM/FB step. Compute3k ∈ ∂B9FB(xk) and

x̃k+1 = xk −3−1
k 9FB(x

k).

If this point is well-defined and (3.4) holds, setxk+1 = x̃k+1, adjustk by 1, and

go toInitialization step .

If x̃k+1 is well-defined but (3.4) does not hold, setd̃k = x̃k+1 − xk. If

〈ϕ′
FB(x

k), d̃k〉 ≤ −γ ‖d̃k‖δ,

setdk = d̃k and go toLinesearch step .

Gradient step. Setdk = −ϕ′
FB(x

k).

Linesearch step. Compute the stepsize parameterαk according to the

Armijo rule: αk = τ s, wheres is the smallest nonnegative integer satisfying

ϕFB(x
k + τ sdk) ≤ ϕFB(x

k)+ ετ s〈ϕ′
FB(x

k), dk〉.

Setxk+1 = xk + αkdk, adjustk by 1, and go toInitialization step .

Note that (3.3) differs slightly from the pure Gauss–Newton iteration given

by (2.16) withC(xA+) defined in (2.15). The modification is made in order to

reduce the number of evaluations of the Jacobian ofF : the described algorithm

requires exactly one such evaluation per iteration, whether Alg= 1 or 2. This
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modification does not affect the rate of convergence. To see this, note that (2.16)

can be written in the form

xk+1
A+

= xk
A+

− (C(xk
A+
)(C(xk

A+
))T )−1C(xk

A+
)FA(x

k
A+
, l A0l ∪Nl , uA0u∪Nu).

Comparing this iteration with (3.3), observe that
∥
∥
∥
∥
∂FA

∂xA+

(xk)− (C(xk
A+
))T

∥
∥
∥
∥ =

∥
∥
∥
∥
∂FA

∂xA+

(xk)−
∂FA

∂xA+

(xk
A+
, l A0l ∪Nl , uA0u∪Nu)

∥
∥
∥
∥

= O(‖xk
A0l ∪Nl

− l A0l ∪Nl ‖ + ‖xk
A0u∪Nu

− uA0u∪Nu‖)

= O(‖xk − x̄‖),

provided the index sets are correctly identified for a given solutionx̄.

To compute3k ∈ ∂B9FB(xk) at SNM/FB step, we used the procedure sugges-

ted in [1] (withzi = 1 ∀ i = 1, . . . , n, in the notation of [1], and the “computer

zero” parameter set to 10−10). The well-known formula

ϕ′
FB(x

k) = 3T
k9FB(x

k)

is used to compute the gradient ofϕFB.

In the numerical experiments reported below, we used the following set of

parameters:q = 0.9, ε = 10−4, τ = 0.5, δ = 2.1, γ = 10−9. The stopping

criterion is

‖9FB(x
k)‖ < 10−9. (3.5)

The cases when an algorithm did not terminate according to this criterion after

500 iterations are referred to as failures.

The algorithm was implemented in Matlab, making use of the standard option

for treating sparse matrices. The Table 1 below reports first the total number of

iterations for the two algorithms, and then the number of times the GNM/active-

set step has been used. Next to the latter number, in the brackets, stands the

number of active-set iterations at the “tail” of the process (right before con-

vergence had been declared). Next, the total number of SNM/FB steps of the

globalization scheme is reported for the two algorithms. In the brackets is the

number of complete SNM/FB steps, i.e., those accepted with the unite stepsize

in the linesearch step or by the linear decrease test without linesearch. Finally,

the number of gradient steps and the number of evaluations ofF are reported
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Iter GNM/AS SNM/FB Gradient Numberof

number steps steps steps evaluations

(tail) (stepsize =1) of F

Alg 1 2 2 1 2 1 2 1 2

badfree 36 8 2(1) 36 6 179 62

bert_oc 8 10 1(0) 8(8) 9(9) 24 56

bertsekas 59 59 59(6) 59(6) 937 1140

billups – – – – – – – – –

bishop – – – – – – – – –

bratu 29 29 29(10) 29(10) 200 258

choi 6 6 6(6) 6(6) 18 32

colvdual – – – – – – – – –

colvnlp 11 11 1(1) 11(5) 10(4) 68 93

cycle 4 4 3(3) 4(3) 1(0) 15 23

degen 6 5 1(1) 6(6) 4(4) 18 30

duopoly – 59 1(0) – 56(10) – 2 – 916

ehl_k40 – – – – – – – – –

ehl_k60 – – – – – – – – –

ehl_k80 – – – – – – – – –

ehl_kost 30 30 30(6) 30(6) 217 289

electric 131 131 131(8) 131(8) 1225 1663

explcp 22 21 1(1) 22(7) 20(5) 132 186

forcebsm – – – – – – – – –

forcedsa – – – – – – – – –

freebert 18 25 1(0) 18(5) 24(5) 124 291

gafni 13 13 13(4) 13(4) 76 114

games 30 – – 30(7) – – 340 –

hanskoop 16 4 1(1) 15(15) 2(2) 1 1 53 26

hydroc06 5 5 4(4) 5(4) 1(0) 18 28

hydroc20 9 9 8(8) 9(8) 1(0) 31 49

jel 10 9 1(1) 10(8) 8(6) 38 57

josephy 4 3 1(1) 4(4) 2(2) 12 16

kojshin 4 3 1(1) 4(4) 2(2) 12 16

lincont – – – – – – – – –

mathinum 8 8 2(2) 8(7) 6(5) 27 47

mathisum 9 9 9(7) 9(7) 33 65

methan08 4 4 3(3) 4(4) 1(1) 12 20

Table 1 – Global algorithm for MCPLIB.
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Iter GNM/AS SNM/FB Gradient Numberof

number steps steps steps evaluations

(tail) (stepsize =1) of F

Alg 1 2 2 1 2 1 2 1 2

nash 6 6 1(1) 6(5) 5(4) 22 34

ne-hard – 29 18(4) – 11(4) – – 187

obstacle 8 8 8(6) 8(6) 30 48

opt_cont 12 12 12(10) 12(10) 43 71

opt_cont127 13 13 13(7) 13(7) 65 97

opt_cont255 15 15 15(8) 15(8) 75 111

opt_cont31 9 9 9(8) 9(8) 30 48

opt_cont511 20 20 20(6) 20(6) 140 200

pgvon106 28 28 27(2) 27(2) 1 1 206 301

pies 11 11 11(9) 11(9) 41 69

powell 8 8 6(6) 6(6) 2 2 40 68

powell_mcp 3 3 2(2) 3(3) 1(1) 9 15

qp 6 5 1(1) 6(6) 4(4) 18 28

scarfanum 5 5 5(5) 5(5) 15 31

scarfasum 5 5 5(5) 5(5) 15 31

scarfbsum 170 170 170(8) 170(8) 2002 2620

shubik – 395 1(0) – 392(6) – 2 – 7002

simple-ex – – – – – – – – –

simple-red 11 11 2(2) 11(11) 9(9) 33 65

sppe 7 7 2(2) 6(6) 4(4) 1 1 25 42

tinloi 8 8 8(8) 8(8) 24 48

tobin 3 3 1(1) 3(3) 2(2) 9 16

trafelas 58 58 55(7) 55(7) 3 3 471 599

Table 1 – Global algorithm for MCPLIB (continuation).

(recall that for both algorithms, the Jacobian ofF is evaluated once per iteration).

Failures are marked by “–”.

Both variants of the algorithm failed for the following 10 problems:billups ,

bishop , colvdual , ehl_k40 , ehl_k60 , ehl_k80 , forcebsm , forcedsa ,

lincont , simple-ex . Recall that by failure we mean that (3.5) was not satisfied

after 500 iterations. In particular, forbillups both variants of the algorithm

converged to a local minimizer of the merit function, which is not an MCP

solution. But for this problem, this is typical for (most) MCP algorithms. We

note that the problems mentioned above are considered among the difficult ones
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in MCP literature. Since we were able to solve essentially all the other problems,

this means that our implementation of the global scheme, though simple, is

sufficiently robust. The rest of this discussion focuses on the cases for which at

least one algorithm did not fail.

For 3 problems, namelyduopoly , shubik , andne-hard , switching to our

step at some early stage prevented failure (although forne-hard , the accuracy

obtained by the algorithm without switching was of order 10−9, i.e., almost sa-

tisfying the stopping test (3.5)). The opposite situation was observed forgames

only, though the obtained accuracy in the latter case was also of order 10−9.

We do not have an explanation for the behavior on those 4 problems and regard

it as (probably) “accidental”. Moreover, the possible negative global effect of

switching to the active-set step too early can be avoided by the following simple

trick. When an active-set step is accepted, we can store the previous iterate as a

back-up, and restart the algorithm from that point if an active-set step is rejec-

ted on some subsequent iteration (which indicates that the switch occurred too

early).

For 20 test problems the active-set step was never accepted, but trying it never

harmed drastically. The number of evaluations ofF for the algorithm without

the switching option is typically not much less than for the complete variant,

especially when the number of iterations is relatively large. We consider this

extra work as a price to pay for safeguarding better local convergence properties

in situations where SNM/FB runs into difficulties (see below).

The GNM/active-set step was ever accepted “improperly”, i.e., far from a

solution and with (probably) incorrect identification, for 5 test problems only. As

mentioned above, forduopoly andshubik this actually prevented failure, but

for games this caused it. Forfreebert this resulted in some extra linesearch

steps. This points to the (obvious) fact that switching to the active-set strategy

too early should be avoided.

For 19 test problems our step was used “properly” (on the final stage of the

process). Forbadfree andhandskoop , this was evidently rather advantage-

ous. This has to do, of course, with the lack of (B D-)regularity, which affects

the SNM/FB algorithm. In the other cases (apparently eitherB D-regular or not

regular even in our sense), the conclusions are overall similar to the situation

when our step was never used. In those cases, we do not win or lose much. On
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the one hand, we typically have to pay the price of a few more evaluations of

F (but not always). On the other hand, note that the dimension of the linear

system of equations which gives the GNM/active-set step is smaller than the

dimension of the system to compute the SNM/FB step. This can be significant

for large-scale problems (if the GNM/active-set step is accepted then no further

computation is needed at this iteration). Finally, the “proper” use of our step

never increased (and sometimes decreased) the overall number of iterations.

General conclusions are as follows. The option of switching to our step never

harms too much, though we certainly have to pay some extra price for computing

it at some iterations (at those where the index sets do not change), even if this step

is eventually rejected. But this is consistent with the main goal of the presented

approach. We emphasize that the goal is not in improving the linesearch SNM/FB

(or any other algorithm)when it works efficiently. We try not to harm/interfere

too much in those cases, while extending the algorithm to the (irregular) cases

when SNM/FB does not work well.

We also point out that the efficiency of the identification procedure is of crucial

importance for the methods presented in this paper. According to our numerical

experience, the switching to our local method usually occurs exactly one iteration

after the correct identification is obtained. Additional tuning of the identification

procedure (i.e., using scaling or different identification functions) might improve

the performance significantly. Actually, identification techniques other than the

one described above could also be tried. Also, note that we have not been using

any heuristic considerations to decide whether or not the active-set step should

be computed. Developing such heuristics can certainly save some computational

work as well. For example, even if the active sets have not changed from one

iteration to the next, we may decide not to compute the active-set step if the

residual is relatively large (i.e., we are still far from a solution). Other important

issues are feasible versions of the method, and different globalization schemes

which would better fit the structure of the method. This will be the subjects of

future research.

To conclude, we illustrate some possible scenarios of the purelylocalbehavior

of SNM/FB and GNM/AS by applying them to the following small test pro-

blems with violatedBD-regularity for9FB. We are talking here about the basic

SNM/FB and GNM/AS iterations, without any modifications and tricks concer-
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ned with globalization. In particular, GNM/AS algorithm is specified precisely

by (2.15), (2.16), with the index sets identified at the starting point (thus, this is

the algorithm whose local properties are characterized by Theorem 2.2).

The first problem is a slight modification of [3, Example 3.1].

Example 3.1. Let n = 2, l i = 0, ui = +∞, i = 1, 2, and letF(x) =

((x1−1)2, x1+x2+x2
2 −1). The pointx̄ = (1, 0) is the solution of this NCP. Se-

mistability (and hence,BD-regularity for9N R and9FB) is violated here, while

2-regularity and weak regularity hold. The starting point isx0 = (1.5, −0.5),

with ‖x0 − x̄‖ ≈ 7.1e–01,‖9FB(x0)‖ ≈ 8.2e–01, det30 ≈ 1.4e+00.

SNM/FB converges in 13 steps. At the final step,‖x13 − x̄‖ ≈ 3.0e–05,

‖9FB(x13)‖ ≈ 6.2e–10, det313 ≈ –8.3e–05 (which indicates degeneracy).

The rate of convergence is linear, with the ratio approaching 1/2.

The behavior of GNM/AS is reported in Table 2, and it clearly shows fast

quadratic convergence.

k 0 1 2 3

‖xk − x̄‖ 7.1e–01 1.3e–01 3.7e–03 9.9e–08

‖9FB(xk)‖ 8.2e–01 1.6e–02 1.4e–05 9.9e–15
‖xk−x̄‖

‖xk−1−x̄‖
1.8e–01 2.9e–02 2.7e–05

Table 2 – GNM/AS for Example 3.1.

The next four problems, taken from [14, Example 1–4] (Example 3.2 is slightly

modified), are the KKT systems of the form (1.2), withg(z) = f ′(z), z ∈ Rp,

where the objective functionf : Rp → R will be specified for each example

below.

Example 3.2. Let p = m = 2, f (z) = (z1 + z2)
2/2 + (z1 + z2)

3/3, G(z) =

(z1, z2), z ∈ R2, z̄ = 0, μ̄ = 0. Semistability holds here, but for9N R (and

hence, for9FB), BD-regularity is violated. The starting point isz0 = (1, 2),

μ0 = (0.01, 0.01), with ‖x0 − x̄‖ ≈ 2.2e+00,‖9FB(x0)‖ ≈ 1.7e+01, det30 ≈

4.3e–04.

The behavior of SNM/FB is as follows: det31 ≈ 7.3e–10, det32 ≈ 0, but

the corresponding linear system is solvable, and the method manages to escape
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the “bad” region. Specifically, det33 ≈ 4.3e–16, while det34 ≈ 2.5e–00, and

the algorithm converges in 7 iterations. At the final step,‖x7 − x̄‖ ≈ 1.0e–16,

‖9FB(x7)‖ ≈ 1.4e–16, det37 ≈ 2. The rate of convergence is superlinear.

The behavior of GNM/AS is reported in Table 3, and it also shows the super-

linear rate.

k 0 1 2 3

‖xk − x̄‖ 2.2e+00 9.0e–01 3.2e–01 7.1e–02

‖9FB(xk)‖ 1.7e+01 4.1e+00 9.3e–01 1.6e–01
‖xk−x̄‖

‖xk−1−x̄‖
4.0e–01 3.5e–01 2.2e–01

k 4 5 6 7

‖xk − x̄‖ 5.0e–03 2.8e–05 9.1e–10 9.3e–19

‖9FB(xk)‖ 1.0e–02 5.7e–05 1.8e–09 1.8e–18
‖xk−x̄‖

‖xk−1−x̄‖
7.1e–02 5.6e–03 3.2e–05 1.0e–09

Table 3 – GNM/AS for Example 3.2.

Note that while SNM/FB and GNM/AS exhibit similar convergence for this

problem, the performance of SNM/FB clearly depends on the specific implemen-

tation. In particular, solution of a given degenerate linear system depends on the

linear solver, and can affect the overall convergence. Also, in the cases where

BD-regularity is violated, different procedures to compute3k could result (in

general, not in this example) in different linear systems and some of them can be

ill-conditioned close to the solution, preventing fast convergence of SNM/FB.

The next example shows that both 2-regularity of9S and weak regularity are

important for fast convergence of GNM/AS.

Example 3.3. Let p = m = 2, f (z) = z2
1/2+ z3

2/3, G(z) = (z1 − z2
2/2, z1 +

z2
2/2), z ∈ R2, z̄ = 0, μ̄ = 0. Semistability is violated (and hence,B D-

regularity for9N R and9FB is violated). For9S, 2-regularity holds, but weak

regularity does not. The starting point isz0 = (0.1, 0.1), μ0 = (0.1, 0.1), with

‖x0 − x̄‖ ≈ 2.0e–01,‖9FB(x0)‖ ≈ 1.3e–01, det30 ≈ 2.0e–01.

Both SNM/FB and GNM/AS converge in 12 steps, and‖x12 − x̄‖ ≈ 2.4e–05,

‖9FB(x12)‖ ≈ 8.4e–10, det312 ≈ 2.9e–04. The rate of convergence is linear
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with ratio 1/2.

Example 3.4. Let p = 2,m = 3, f (z) = z1+(z2
1+z2

2)/2,G(z) = (z1, z2, z1+

z2), z ∈ R2, z̄ = 0, μ̄ = (1, 0, 0). Semistability holds here, but for9N R (and

hence, for9FB), BD-regularity is violated. The starting point isz0 = 0,μ0 =

(1, 0.01, 0.01), with ‖x0 − x̄‖ ≈ 2.2e–01,‖9FB(x0)‖ ≈ 1.2e–01, det30 = 0.

Though30 is singular, the SNM/FB linear system is solvable, and the method

manages to escape. Specifically, det31 = −2, and the algorithm converges in 2

iterations: the second step gives the exact solution with det32 ≈ –3.5e–01. Note

however that, as already discussed above, this behavior cannot be guaranteed for

some other implementation of the linear system solver (and in general, of the

procedure to compute3k).

GNM/AS terminates after 1 step at the exact solution. The reason for this is

that A0 = {4, 5}, while x0
1, x0

2, andx0
3 coincide with the corresponding compo-

nents ofx̄. The iteration of GNM/AS terminates with the exact solution at the

identification phase.

Example 3.5. Let p = m = 1, f (z) = z4/4, G(z) = z, z ∈ R, z̄ = 0, μ̄ = 0.

Weak regularity holds here, but semistability (and hence,B D-regularity for9N R

and9FB) and even 2-regularity for9S, are violated. The starting point isz0 = 1,

μ0 = 0.1, with‖x0− x̄‖ ≈ 1.0e+00,‖9FB(x0)‖ ≈ 9.1e–01, det30 ≈ 2.7e+00.

SNM/FB converges in 18 steps. At the final step,‖x18 − x̄‖ ≈ 6.8e–04,

‖9FB(x18)‖ ≈ 3.1e–10, det313 ≈ 3.1e–06. The rate of convergence is linear

with ratio approaching 2/3.

The behavior of GNM/AS is reported in Table 4, and it shows fast quadratic

convergence.

k 0 1 2 3 4

‖xk − x̄‖ 1.0e+00 6.0e–01 2.2e–01 2.7e–03 9.0e-13

‖9FB(xk)‖ 9.1e–01 2.2e–01 1.0e–03 2.0e–08 7.4e-37
‖xk−x̄‖

‖xk−1−x̄‖
6.0e–01 3.6e–01 1.3e–02 3.3e-10

Table 4 – GNM/AS for Example 3.5.

The final example NCP taken from [15, Example 2.1].
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Example 3.6. Let n = 2, F(x) = (−x1 + x2, −x2), x ∈ R2, x̄ = 0. BD-

regularity holds for9N R (and hence, semistability also holds), but not for9FB.

The starting point isx0 = (2, 4), with ‖x0 − x̄‖ ≈ 4.5e+00,‖9FB(x0)‖ ≈

5.8e+00, det30 = 0.

Here, SNM/FB fails to make a step. At the same time, GNM/AS terminates

after 1 step at the exact solution. The reason for this is thatA0 = {1, 2}. Thus,

the iteration of GNM/AS reduces to identifying the index sets.

Note that the problem in Example 3.6 is actually a linear complementarity

problem, that is, NCP with affineF . We point out that in the case of affine

F , just one step of GNM/AS gives the exact solution, provided the index sets

are correctly identified. For example, this behavior is observed also for the

problembadfree from the MCPLIB collection: oncexk is close to the solution

x̄ = (0, 0, 0.5, 0.5, 1), GNM/AS producesxk+1 = x̄. At the same time, forxk

close tox̄, a degenerate3k is computed, and SNM/FB fails.
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