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Abstract. Pietruszczak (Bull Sect Log 38(3/4):163–171, 2009. https://doi.org/10.12775/

LLP.2009.013) proved that the normal logics K45, KB4 (= KB5), KD45 are determined

by suitable classes of simplified Kripke frames of the form 〈W,A〉, where A ⊆ W . In

this paper, we extend this result. Firstly, we show that a modal logic is determined by

a class composed of simplified frames if and only if it is a normal extension of K45.

Furthermore, a modal logic is a normal extension of K45 (resp. KD45; KB4; S5) if and

only if it is determined by a set consisting of finite simplified frames (resp. such frames

with A �= ∅; such frames with A = W or A = ∅; such frames with A = W ). Secondly,

for all normal extensions of K45, KB4, KD45 and S5, in particular for extensions obtained

by adding the so-called “verum” axiom, Segerberg’s formulas and/or their T-versions, we

prove certain versions of Nagle’s Fact (J Symbol Log 46(2):319–328, 1981. https://doi.

org/10.2307/2273624) (which concerned normal extensions of K5). Thirdly, we show that

these extensions are determined by certain classes of finite simplified frames generated by

finite subsets of the set N of natural numbers. In the case of extensions with Segerberg’s

formulas and/or their T-versions these classes are generated by certain finite subsets of N.

Keywords: Simplified Kripke-style semantics, Semi-universal frames, Normal modal

logics.

Introduction

Semi-universal frames introduced in [5] for some normal logics are Kripke
frames of the form 〈W, R〉, where W is a non-empty set of possible worlds
and R is an accessibility relation such that R = W × A, for some subset A
of W (so A is a set of common alternatives for all worlds).1 Instead of semi-
universal frames we can use simplified frames of the form 〈W, A〉, where W
and A are as above. In [5] it is proved that the logics K45, KB4 (= KB5) and
KD45 are determined, respectively by (a) the class of all simplified frames;

1For A = W we have universal frames, i.e., R = W × W . For A = ∅ we have empty
frames, i.e., R = ∅ (since W × ∅ = ∅). Instead of empty frames we can use the single
empty frame F∅ := 〈{1},∅〉 (= 〈{1}, {1} × ∅〉).
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(b) the class of simplified frames such that A = ∅ or A = W ; (c) the class
of simplified frames with A �= ∅.2 In this paper, we focus on extensions of
these logics by means of Segerberg’s formulas (Altn) and their T-versions
(Taltn), for any n > 0.

The structure of the paper is as follows. In Section 1 we introduce a
modal language, basic notions and facts about normal logics, consider Kripke
semantics, and recall determination theorems for normal logics.

In Section 2 we develop the notion of semi-universal frames and so sim-
plified Kripke-style semantics for the logics K45, KD45, KB4, S5 and their
normal extensions by formulas selected from (Altn) and (Taltm). For such
logics, we introduce a special type of frames generated by certain finite sub-
sets of N.

In Section 3 we present Nagle’s Fact from [2] and its versions for K45,
KB4, KD45, S5 and for these logics with additional axioms selected from
(Altn) and (Taltn). We obtain that a modal logic is a normal extension of
K45 if and only if it is determined by a subclass of the class of finite semi-
universal frames.3 Furthermore, we obtain that a modal logic is a normal
extension of KD45 (resp. KB4; S5) if and only if it is determined by a set
consisting of finite semi-universal frames with A �= ∅ (resp. with A = W
or A = ∅; A = W ). For the logics with an additional axiom (Altn) and/or
(Taltm) we obtain that a modal logic is a normal extension of one of these
logics if and only if it is determined by a suitable class of semi-universal
frames whose cardinalities are suitable limited using numbers n and/or m.
Also in this case, we will use frames generated by certain finite subsets of N.

1. Preliminaries

1.1. Normal Modal Logics

Let At be the set of all atoms (or propositional letters): ‘p1’, ‘q1’, ‘p2’, ‘q2’,
‘p3’, ‘q3’, . . . (for ‘p1’ and ‘q1’ we use ‘p’ and ‘q’, respectively). The set For
of all formulas for (propositional) modal logics is standardly formed from
atoms, brackets, truth-value operators: ‘¬’, ‘∨’, ‘∧’, ‘⊃’, and ‘≡’ (connec-
tives of negation, disjunction, conjunction, material implication, and ma-
terial equivalence, respectively), and the modal operator ‘�’ (the necessity
sign; the possibility sign ‘♦’ is the abbreviation of ‘¬�¬’). For any k > 0

2It is well known that the logic S5 is determined by the class of universal frames; and
so by the class of simplified frames of the form 〈W,W 〉.

3A frame (model) is said to be finite just in case the number of members of W is finite.
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and any formula of the form �ϕ1 ∨ · · · ∨ ϕk� we write
∨k

i=1 ϕi. Finally, we
put 	 := ‘p2 ⊃ p2’ and ⊥ := ‘p2 ∧ ¬p2’.

Let Taut be the set of classical tautologies, i.e., all truth-functional tau-
tologies. Moreover, let PL be the set of formulas which are instances of
classical tautologies. A subset Λ of For is a modal logic iff Taut ⊆ Λ and
Λ is closed under two rules: detachment for material implication (modus
ponens) and uniform substitution. Thus, by uniform substitution, all modal
logics include the set PL. Moreover, this set is the smallest modal logic.

A modal logic Λ is normal iff Λ contains the following formula:

�(p ⊃ q) ⊃ (�p ⊃ �q) (K)

and is closed under the necessity rule:
if ϕ ∈ Λ then ��ϕ� ∈ Λ. (RN)

Any normal logic Λ is closed under the monotonicity and regularity rules:
if �ϕ ⊃ ψ� ∈ Λ then ��ϕ ⊃ �ψ� ∈ Λ. (RM)

if �ϕ1 ⊃ (ϕ2 ⊃ ψ)� ∈ Λ then ��ϕ1 ⊃ (�ϕ2 ⊃ �ψ)� ∈ Λ. (RR)

Thus, for any normal logic Λ and any k � 0 we obtain:

if �(ϕ1 ∧ · · · ∧ ϕk) ⊃ ψ� ∈ Λ then �(�ϕ1 ∧ · · · ∧ �ϕk) ⊃ �ψ� ∈ Λ.

We recall that K is the smallest normal modal logic. To simplify the
naming of normal logics, for any formulas (X1), . . . , (Xk), the smallest normal
logic including all of these formulas will be denoted by KX1 . . .Xk, i.e.,
KX1 . . . Xk := K ⊕ {X1, . . . , Xk}.

In order to define other logics we will use the following formulas:4

�q (Q)

�p ⊃ p (T)

p ⊃ �p (Tc)

(�p ⊃ p) ∨ �q (Tq)

�p ⊃ ♦p (D)

♦p ⊃ �p (Dc)

p ⊃ �♦p (B)

�p ⊃ ��p (4)

4The name ‘(Tq)’ is an abbreviation for ‘quasi-T’, because quasi-reflexive frames are
adequate for K ⊕ (Tq), while K ⊕ (T) is determined by the class of reflexive frames.
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♦p ⊃ �♦p (5)

�♦p ⊃ ♦p (5c)

It is known that (5c) ∈ KD4, (D) ∈ K5c and (4) ∈ K55c [see, e.g., 1,3,
4]. Hence KD4 = K45c and KD45 = K55c. Moreover, notice that for an
arbitrary modal logic Λ: �T ⊃ Tq� and �Q ⊃ Tq� belong to Λ. So (Tq) ∈ Λ ⊕
(T) and (Tq) ∈ Λ ⊕ (Q), for any normal logic Λ.

We put T := KT, S4 := KT4 and S5 := KT5. We have KT = KD ⊕ (Tq)
and KB4 = KB5 = KB45 = K5 ⊕ (Tq) = K45 ⊕ (Tq). So also KB4 =
KB4 ⊕ (Tq). Moreover, S5 := KT5 = KD5 ⊕ (Tq) = KTB4 = KDB5 =
KDB4 = KD45⊕ (Tq) [see, e.g., 1,6,7]. For the semantic proof of these facts
see Remark 1.3.

Let Ver (“Verum”) be the smallest logic containing (Q) (in [8] it is the
logic Abs, called the “Absurd System”). We have Ver = K⊕(Q). All formulas
of the form �ϕ ⊃ �ψ� and �ϕ ∨ �ψ� belong to Ver. So (B), (4), (5), and
(Tq) belong to Ver, and so K4 ⊕ (Q) = K5 ⊕ (Q) = KB ⊕ (Q) = Ver.

Any logic Λ which contains both (Q) and (D) is inconsistent, i.e., if
(D), (Q) ∈ Λ then Λ = For. So Ver ⊕ (D) = For = Ver ⊕ (T), as well
S5 ⊕ (Q) = KD ⊕ (Q) = KD45 ⊕ (Q) = For.

Let Triv be the smallest logic containing (T) and (Tc). The logic Triv is
normal and it contains (Tq), (D), (B), (4) and (5). So S5 � Triv.

We also use Segerberg’s formulas and their T-versions for any n > 0:

�q1 ∨ �(q1 ⊃ q2) ∨ · · · ∨ �((q1 ∧ · · · ∧ qn) ⊃ qn+1) (Altn)

(�p ⊃ p) ∨ (Altn) (Taltn)

Note that

• K ⊕ (Alt1) = K ⊕ (Dc).

For an arbitrary modal logic Λ and n > 0 we have: �Tq ⊃ Taltn�,
�Q ⊃ Altn�, �Altn ⊃ Taltn�, �Altn ⊃ Altn+1� and �Taltn ⊃ Taltn+1�
belong to Λ. Hence we get:

• (Taltn) ∈ Λ ⊕ (Tq);

• because (Tq) ∈ KB4, if Λ is a normal extension of KB4, then Λ =
Λ ⊕ (Tq) = Λ ⊕ (Taltn) and Λ ⊕ (Altn) = Λ ⊕ {Altn, Taltm}, for any
m > 0;

• (Altn+1) ∈ Λ ⊕ (Altn);

• (Taltn+1) ∈ Λ ⊕ (Taltn);

• if m � n then (Taltm) ∈ Λ⊕(Altn); so K⊕(Altn) = K⊕{Altn, Taltm}.
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Note that for any n > 0, (Altn) belongs to Ver, and (Taltn) belongs to
S5 � Triv. It is known that:

• S5 � · · · � S5 ⊕ (Altn) � · · · � S5 ⊕ (Alt1) = Triv; and this sequence
comprise all the normal extensions of S5 [see 8, p. 122];

• K4 � · · · � K4 ⊕ (Altn) � · · · � K4 ⊕ (Alt1) � K4 ⊕ (Q) = Ver;

• K5 � · · · � K5 ⊕ (Altn) � · · · � K5 ⊕ (Alt1) � K5 ⊕ (Q) = Ver;

• KB � · · · � KB ⊕ (Altn) � · · · � KB ⊕ (Alt1) � KB ⊕ (Q) = Ver;

• K45 � · · · � K45 ⊕ (Altn) � · · · � K45 ⊕ (Alt1) � K45 ⊕ (Q) = Ver;

• KB4 � · · · � KB4 ⊕ (Altn) � · · · � KB4 ⊕ (Alt1) � KB4 ⊕ (Q) = Ver;

• K5 � · · · � K5 ⊕ (Taltn) � · · · � K5 ⊕ (Talt1) � K5 ⊕ (Tq) = KB5 =
KB4;

• K45 � · · · � K45⊕(Taltn) � · · · � K45⊕(Talt1) � K45⊕(Tq) = KB4;

• KD5 � · · · � KD5 ⊕ (Taltn) � · · · � KD5 ⊕ (Talt1) � · · · � KD45 ⊕
(Talt1) � S5;

• KD45 � · · · � KD45 ⊕ (Taltn) � · · · � KD45 ⊕ (Talt1) � S5.

Cf., e.g., [8, p. 127], Theorems 1.3, 1.2, 3.3, [6, p. 120] and [7, p. 207]. Notice
that KD5 ⊕ (Talt1) = KD45 ⊕ (Tq) = S5.

Remark 1.1. The formulas (Q), (Altn), (Tq) and (Taltn) are connected with
the following formulas for any n � 0:5

p ∨ �(p ⊃ q1) ∨ �((p ∧ q1) ⊃ q2) ∨ · · · ∨ �((p ∧ q1 ∧ · · · ∧ qn) ⊃ qn+1) (Cn)

We will prove that K ⊕ {Alt1, Tq} = K ⊕ (C0) and K ⊕ {Altn+1, Taltn} =
K ⊕ (Cn), for any n > 0 [see Remark 1.3(2)]. Therefore, it is unnecessary to
consider formulas (Cn).

1.2. Kripke Semantics for Normal Logics

For the semantical analysis of normal logics we may use standard frames of
the form 〈W, R〉, where W is a non-empty set of worlds and R is a binary
accessibility relation on W . For any frame 〈W, R〉, a model is any triple
〈W, R, V 〉, where V is a function which for any pair consists of a formula
and a world assigns a truth-value with respect to R. More precisely, V : For×
W → {0, 1} preserves classical conditions for truth-value operators and for
any ϕ ∈ For and x ∈ W we have:

5One of the anonymous reviewers of this paper drew our attention to the formulas (Cn).
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(VR
� ) V (�ϕ, x) = 1 iff ∀y∈R[x] V (ϕ, y) = 1,

where for any x ∈ W we put R[x] := {y ∈ W : x R y}.
As usual, we say that a formula ϕ is true in a world x of a model 〈W, R, V 〉

iff V (ϕ, x) = 1. We say that a formula is true in a model iff it is true in
all worlds of this model. Next we say that a formula is true in a frame iff
it is true in every model which is based on this frame. A formula is valid
in a class of frames (resp. models) iff it is true in all frames (resp. models)
from this class. Moreover, for any modal logic Λ and any class C of frames
(resp. models) we say that: Λ is sound wrt C iff all formulas from Λ are
valid in C ; Λ is complete wrt C iff all valid formulas in C are members of Λ;
Λ is determined by C iff Λ is sound and complete wrt C .6

A binary relation R on W is called, respectively: (i) empty iff R = ∅;
(ii) universal iff R = W ×W ; (iii) reflexive iff ∀x∈W xRx; (iv) quasi-reflexive
iff ∀x∈W (∃y∈W x R y ⇒ x R x) iff ∀x∈W (x R x or R[x] = ∅); (v) serial iff
∀x∈W ∃y∈W x R y; (vi) symmetric iff ∀x,y∈W (x R y ⇒ y R x); (vii) transitive
iff ∀x,y,z∈W (x R y & y R z ⇒ x R z); (viii) Euclidean iff ∀x,y,z∈W (x R y &
x R z ⇒ y R z); (ix) vacant iff ∀x,y∈W (x R y ⇒ x = y); (x) identity iff
R = {〈x, x〉 : x ∈ W}. We will transfer this terminology for properties of
accessibility relations to the frames with those relations.

Notice that for any binary relation R we have:
(�) R is reflexive iff R is serial and quasi-reflexive.

(��) R is symmetric and transitive iff R is symmetric and Euclidean iff R
is Euclidean and quasi-reflexive.

Additionally, for any n � 0 we will consider three classes of relations sat-
isfying the following conditions: (xi)n ∀x∈W CardR[x] � n; (xii)n ∀x∈W (xRx
or CardR[x] � n); and (xiii)n ∀x∈W Card(R[x]\{x}) � n. Of course, (xi)0 =
(i) and (xii)0 = (iv). Moreover, we have:

(†) for all n � 0 and x ∈ W : Card(R[x]\{x}) � n iff CardR[x] � n + 1 and
either x R x or CardR[x] � n.

Hence:

(‡) R satisfies (xiii)0 iff R satisfies (xi)1 and (iv); and for any n > 0: R
satisfies (xiii)n iff R satisfies (xi)n+1 and (xii)n.

6Later in this paper for any class C of frames, Cfin (resp. C+, C+
fin) will be the subclass

of finite (resp. non-empty, non-empty finite) frames from C .
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1.3. Determination Theorems for Some Normal Logics

We can assign appropriate kinds of frames to individual formulas. We have
the following pairs: emptiness to (Q); reflexivity to (T); quasi-reflexivity to
(Tq); vacuity to (Tc); seriality to (D); symmetry to (B); transitivity to (4);
Euclideanness to (5); the condition (xi)n to (Altn); the condition (xii)n to
(Taltn), for any n > 0; the condition (xiii)n to (Cn), for any n � 0.

Determination theorems for the logic K and its normal extensions by
some of the formulas (T), (Tc), (D), (B), (4) and (5) are standard [cf., e.g.,
1,8,9]. For normal extensions of K ⊕ (Altn), see [8, pp. 52–53]. Moreover,
for normal extensions of K ⊕ (Tq), K ⊕ (Taltn) or K ⊕ (Cn) we will adopt
Segerberg’s proof of Lemma 5.3 given for normal extensions of K ⊕ (Altn).

Lemma 1.1. 1. [cf. 8, Lemma 5.3] Let Λ be a normal extension of
K⊕(Altn), where n > 0 and MΛ = 〈WΛ, RΛ, VΛ〉 be a canonical model
for Λ. Then for any x ∈ WΛ, CardRΛ[x] � n.

2. Let Λ be a normal extension of K ⊕ (Taltn), where n > 0 (resp. of
K ⊕ (Tq)). Let MΛ = 〈WΛ, RΛ, VΛ〉 be a canonical model for Λ. Then
for any x ∈ WΛ either x RΛ x or CardRΛ[x] � n (resp. either x RΛ x or
CardRΛ[x] = 0).

3. Let Λ be a normal extension of K ⊕ (Cn), where n � 0, and MΛ =
〈WΛ, RΛ, VΛ〉 be a canonical model for Λ. Then for any x ∈ WΛ we have
Card(RΛ[x]\{x}) � n.

Proof. Ad (2): Assume for a contradiction that there are pairwise different
x0, x1, . . . , xn+1 from WΛ such that x0RΛx1, . . . , x0RΛxn+1 and it is not the
case that x0 RΛ x0 (for K⊕ (Tq) we use the case where n = 0). For arbitrary
different i, j ∈ {0, . . . , n + 1} there is a formula ϕi,j such that ϕi,j /∈ xi

and ϕi,j ∈ xj . Now for any i ∈ {0, . . . , n + 1} we put ψi :=
∨n+1

j=0 ϕi,j . So
for all i, j ∈ {0, . . . , n + 1} we have: ψi ∈ xj iff i �= j. Hence the formula
�(�ψ0 ⊃ ψ0) ∨ �ψ1 ∨ �(ψ1 ⊃ ψ2) ∨ · · · ∨ �((ψ1 ∧ · · · ∧ ψn) ⊃ ψn+1)� does
not belong to x0. This contradicts the facts that, by (Taltn) (resp. (Tq), if
n = 0), this formula belongs to all members of WΛ.

Ad (3): Assume for a contradiction that there are pairwise different x0,
x1, . . . , xn+1 from WΛ such that x0RΛ x1, . . . , x0RΛ xn+1. As above for any
i ∈ {0, . . . , n+1}, we define a formula ψi such that for all i, j ∈ {0, . . . , n+1}
we have: ψi ∈ xj iff i �= j. Furthermore, for any i ∈ {1, . . . , n + 1} there
is a formula χi such that χi /∈ x0 and χi ∈ xi. Now we put π :=

∨n+1
i=1 χi.

So for all i ∈ {0, . . . , n + 1} we have: π ∈ xi iff i �= 0. Hence the formula
�π ∨ �(π ⊃ ψ1) ∨ �((π ∧ ψ1) ⊃ ψ2) ∨ · · · ∨ �((π ∧ ψ1 ∧ · · · ∧ ψn) ⊃ ψn+1)�
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does not belong to x0. This contradicts the facts that, by (Cn), this formula
belongs to all members of WΛ.

Theorem 1.2 (8, Theorem 5.4, p. 52). The following logics are determined
by the following conditions on frames 〈W, R〉:
1. K ⊕ (Altn)—for any x ∈ W , CardR[x] � n.

2. KD ⊕ (Altn)—R is serial and for any x ∈ W , CardR[x] � n.

3. K4 ⊕ (Altn)—R is transitive and CardW � n + 1.

4. KD4 ⊕ (Altn)—R is serial and transitive, and CardW � n + 1.

5. K45 ⊕ (Altn)—R is transitive and Euclidean, and CardW � n + 1.

6. KD45 ⊕ (Altn)—R is serial transitive Euclidean and CardW � n + 1.

7. S4 ⊕ (Altn)—R is reflexive and transitive, and CardW � n.

8. S5⊕(Altn)—R is universal and CardW � n.

In the cases 1, 4 and 6–8 the sign ‘�’ can be replaced by ‘=’.

In the standard way, we get:

Theorem 1.3. 1. K is determined by the class of all frames.

2. S5 is determined by the class U of all universal frames, as well by the
class Ufin of all finite universal frames.

3. Triv is determined by the class of frames with R = {〈x, x〉 : x ∈ W}, as
well by the single universal frame F1 := 〈{1}, {〈1, 1〉}〉.

4. Ver is determined by the class of empty frames, as well by the single
empty frame F∅ := 〈{1}, ∅〉.

5. Let (X1), . . . , (Xk) be any formulas from among the following ones: (Q),
(T), (Tq), (Tc), (D), (B), (4), (5), (Altn), (Taltm), (Ck), for all n, m > 0,
k � 0. Then the logic K ⊕ {X1, . . . , Xk} is determined by the class of all
frames which satisfy all conditions for formulas (X1), . . . , (Xk).7

Remark 1.2. For the pair {Altn, Taltm} we obtain the following condition:
• ∀x∈W (CardR[x] � n and either x R x or CardR[x] � m).

Therefore if m � n we get the condition (xi)n.

Remark 1.3. 1. From Theorem 1.3(5) and the fact (�) we have KT = KD ⊕
(Tq). Moreover, by using the fact (��) we obtain: KB4 = KB5 = K5⊕(Tq); so

7If K ⊕ {X1 . . . Xk} = For then K ⊕ {X1 . . . Xk} is determined by the empty class of
frames.
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also KB4 = KB45 = K45⊕(Tq). Thus, we obtain S5 := KT5 = KD5⊕(Tq) =
KTB4 = KDB5 = KDB4 = KD45 ⊕ (Tq).

2. From Theorem 1.3(5) and the fact (‡) we have K⊕{Alt1, Tq} = K⊕(C0)
and K ⊕ {Altn+1, Taltn} = K ⊕ (Cn), for any n > 0.

2. Simplified Semantics for Normal Extension of K45

2.1. Semi-Universal Frames

We say that a relation R in a frame 〈W, R〉 is semi-universal (and we call the
frame semi-universal) iff R = W×A, where A is a subset of W . Furthermore,
if A � W , then R and 〈W, R〉 we call properly semi-universal. Let sU and
psU be the classes of all semi-universal and properly semi-universal frames,
respectively. Note that all empty frames belong to psUfin.

Lemma 2.1 (5, Lemma 2.2). For any semi-universal frame 〈W, R〉:
1. R is transitive and Euclidean.

2. R is reflexive iff R is universal, i.e. R = W × W .

3. R is symmetric iff R is universal or empty, i.e. R = W × W or R = ∅.

4. R is serial iff R is non-empty, i.e. R �= ∅.

Moreover, for any n � 0, if R = W × A:
5. If CardA = n then ∀x∈W CardR[x] = n. So ∀x∈W CardR[x] � n iff

CardA � n.

6. ∀x∈W (x R x or CardR[x] � n) iff either W = A or CardA � n.
∀x∈W (x R x or CardR[x] = n) iff either W = A or CardA = n.

Proof. Points 1–4 are obvious. Ad 5: Because R[x] = A, for any x ∈ W .
Ad 6: ∀x∈W (x R x or CardR[x] � n) iff ∀x∈W (x R x or CardA � n) iff

∀x∈W x R x or CardA � n iff either R is reflexive or CardA � n iff either R
is universal or CardA � n. Similarly for ‘=’.

In [5] the following was proved [cf. 5, Lemma 2.1]:

Lemma 2.2. Let 〈W, R〉 be a frame. Firstly, for arbitrary x, y ∈ W we put
x R1 y := x R y and for any n > 1 let : x Rn y iff there are y1, . . . , yn−1 ∈ W
such that x R y1, . . . , yn−1 R y. Secondly, let

Ax := {y ∈ W | x Rn y for some n > 0},

W x := {x} ∪ Ax, Rx := R ∩ (W x × W x).

Then for any x ∈ W :
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1. If x R x then Ax = W x.

2. If there is a y ∈ W such that x R y then Ax �= ∅.

3. If R is transitive then Ax = R[x].

4. If R is symmetric then either Ax = W x or Ax = ∅.

5. Let R be Euclidean. Then if x R x, then Rx = W x × W x; otherwise
(W x\{x}) × (W x\{x}) ⊆ Rx ⊆ W x × (W x\{x}).

6. If R is symmetric and Euclidean, then Rx = W x × W x or Rx = ∅.

7. If R is transitive and Euclidean, then both:
(a) either Rx = W x × W x or Rx = W x × (W x\{x}),
(b) Rx = W x × Ax.

Proof. Ad 4. Let R be symmetric and Ax �= ∅. Then for some y ∈ Ax we
have x R y and y R x. So x R2 x and x ∈ Ax.

Ad 5. Let R be Euclidean. Suppose that x R x and y, z ∈ W x, i.e., there
are n, m > 0, y1, . . . , yn−1, z1, . . . , zm−1 ∈ W x such that x R x R y1, . . . ,
yn−1 R yn = y and x R x R z1, . . . , zn−1 R zn = z. Then, by assumption, we
obtain: y1 R y1, y1 R x, z1 R z1 and z1 R x. So, by induction, we obtain that
x R yi and x R zi. Hence y R z. Therefore W x × W x ⊆ Rx.

Now suppose that y, z ∈ W x\{x}. Then, firstly, there are n, m > 0,
y1, . . . , yn−1, z1, . . . , zm−1 ∈ W x such that x R y1, . . . , yn−1 R yn = y and
xRz1, . . . , zn−1Rzn = z. Then y1Rz1 and, by induction, yiRzj . So yRz. Thus
(W x\{x}) × (W x\{x}) ⊆ Rx. Secondly, if 〈x, x〉 /∈ R, then Rx �= W x × W x.
Hence, if y Rx z, then z �= x. Therefore Rx ⊆ W x × W x\{x}.

Ad 6. Let R be symmetric and Euclidean. If Ax = ∅, then W x = {x}
and so either Rx = {x} × {x} or Rx ⊆ {x} × ∅ = ∅, by (5). If Ax �= ∅,
then—as in the proof of (4)—we have x R2 x. So also x R x, since R is also
transitive. Hence Rx = W x × W x, by (5).

Ad 7. Let R be transitive and Euclidean. For (a): If Rx �= W x ×W x then
〈x, x〉 /∈ R, by (5). Now suppose that y, z ∈ W x and z �= x. Then, by (3),
x R z and either x = y or x R y. Hence y R z, since R is Euclidean. Thus,
W x × (W x\{x}) ⊆ Rx. So Rx = W x × (W x\{x}), by (5).

For (b): If x /∈ Ax then Ax = W x\{x}. If x ∈ Ax then Ax = W x. So in
both cases Rx = W x × Ax, by (a).

By Lemmas 2.1 and 2.2 we get the following [cf. 5, Corollary 2.3]:

Corollary 2.3. For an arbitrary frame 〈W, R〉 and x ∈ W :
1. If R is reflexive, transitive and Euclidean, then 〈W x, Rx〉 ∈ U.

2. If R is transitive and Euclidean, then 〈W x, Rx〉 ∈ sU.
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3. If R is symmetric and transitive (so also Euclidean), then Rx = ∅ or
〈W x, Rx〉 ∈ U.

4. If R is serial and transitive (Euclidean), then 〈W x, Rx〉 ∈ sU+.

Given the above facts we notice that classes of semi-universal models
for K45, KB4, KD45 and these logics extended by (Q), (Tq), (Altn) and/or
(Taltm) are connected with some classes of generated models. We make
use of models generated from relational models [cf. 1, p. 97]. Let M =
〈W, R, V 〉 and x ∈ W . Then the model generated by x ∈ W is the model
M x = 〈W x, Rx, V x〉 in which W x and Rx are as in Lemma 2.2 and for all
α ∈ At and y ∈ W x we have V x(α, y) = V (α, y). Of course, V x preserves
classical conditions for truth-value operators and satisfies condition (VR

� )
for Rx. So also for all ϕ ∈ For and y ∈ W x we have V x(ϕ, y) = V (ϕ, y).
Moreover, ϕ is true in M iff for any x ∈ W , ϕ is true in M x [see 1, Theorems
3.10 and 3.11].

For any class M of models we put the following class of generated models
G(M) := {M x : M ∈ M and x is in M }. We have:

Fact 2.4 (cf. 1, Theorem 3.12). For any ϕ ∈ For: ϕ is valid in M iff ϕ is
valid in G(M).

The following two lemmas will be used later.

Lemma 2.5. For arbitrary non-empty sets W and S such that W ∩S = ∅: if
ϕ is not true in a universal frame on W , then ϕ is not true in the properly
semi-universal frame 〈W ∪ S, (W ∪ S) × W 〉.8

As a consequence we get : if ϕ is true in a non-empty semi-universal frame
〈W, W ×A〉 then ϕ is also true in the universal frame on A, i.e., in the frame
〈A, A × A〉.
Proof. Assume that for a model M = 〈W, W ×W, V 〉 and for some x ∈ W
we have V (ϕ, x) = 0. Then there is a model M∗ = 〈W ∪S, (W ∪S)×W, V∗〉
such that V∗(ϕ, x) = 0. In fact, we construct v : At× (W ∪ S) → {0, 1} such
that for any α ∈ At,

v(α, y) :=

{
V (α, y) if y ∈ W ,
an arbitrary value from {0, 1} if y ∈ S.

Let M∗ be the model 〈W∪S, (W∪S)×(W∪S), V∗〉, where V∗ is the extension
of v. Obviously, M x

∗ = M . Hence V∗(ϕ, x) = V x
∗ (ϕ, x) = V (ϕ, x) = 0.

8It has already been noticed without proof in [5, p. 170]



A. Pietruszczak et al.

Lemma 2.6. For arbitrary non-empty sets W and S such that W ∩S = ∅: if
ϕ is not true in a universal frame on W then ϕ is not true in the universal
frame on W ∪ S.

As a consequence we get : if ϕ is true in a universal frame on W and
X � W , then ϕ is true in the universal frame on W\X.

Proof. As in the proof of Lemma 2.5, we construct a model M∗, but now
we put for any α ∈ At

v(α, y) :=

{
V (α, y) if y ∈ W ,
V (α, x) if y ∈ S.

Let M∗ be the model 〈W ∪S, (W ∪S)×W, V∗〉, where V∗ is the extension of v.
It is easy to see that for any subformula ψ of ϕ we have: V∗(ψ, x) = V∗(ψ, y),
for any y ∈ S. Hence V∗(ϕ, x) = V (ϕ, x) = 0.

We have a counterpart of the above lemma for semi-universal frames.

Lemma 2.7. For all non-empty sets W , A and S such that A � W and
W ∩S = ∅: if ϕ is not true in a properly semi-universal frame 〈W, W ×A〉,
then ϕ is not true in the properly semi-universal frame 〈W ∪ S, (W ∪ S) ×
(A ∪ S)〉.

As a consequence of we get : if ϕ is true in a properly semi-universal
frame 〈W, W × A〉 and X � A, then ϕ is true in the non-empty properly
semi-universal frame 〈W\X, (W\X) × (A\X).

Proof. Assume that for a model M = 〈W, W ×A, V 〉 and for some x ∈ W
we have V (ϕ, x) = 0. Then there is a model M∗ = 〈W ∪ S, (W ∪ S) × (A ∪
S), V∗〉 such that V∗(ϕ, x) = 0. We consider two cases.

Firstly, if x ∈ A, we construct v : At × (W ∪ S) → {0, 1} as in the proof
of Lemma 2.6. Let M∗ be the model 〈W ∪ S, (W ∪ S) × (A ∪ S), V∗〉, where
V∗ is the extension of v. It is easy to see that for any subformula ψ of ϕ we
have: V∗(ψ, x) = V∗(ψ, y), for any y ∈ S. Hence V∗(ϕ, x) = V (ϕ, x) = 0.

Secondly, if x ∈ W\A, for a certain x0 ∈ A we construct v as above;
the only change is that we take x0 instead of x. It is easy to see that for
any subformula ψ of ϕ we have: V∗(ψ, x0) = V∗(ψ, y), for any y ∈ S. Hence
V∗(ϕ, x) = V (ϕ, x) = 0.

2.2. Semi-Universal Frames for Normal Extension of K45

For a shorter formulation of theorems we accept the following convention.
Let sUw be the class of semi-universal frames with R = W × (W\{w}),
for some w ∈ W . Instead of sUw we can take {F∅} ∪ sUw+. Obviously,



Simplified Kripke-Style Semantics for Some Normal Modal Logics

〈W, R〉 ∈ sUw+ iff 〈W, R〉 ∈ sUw and CardW > 1. Obviously, all frames
from sUw are properly semi-universal.

Note that for any k � 2 the frame 〈{1, . . . , k}, {1, . . . , k} × {2, . . . , k}〉
belongs to sUw+

fin . Let sUwN

fin be the set of all such frames extended by the
single frame F∅. Furthermore, let UN

fin be the set of universal frames based
on {1, . . . , k}, for any k � 1. Obviously, by Theorem 1.3(5), the logic S5 is
determined by the set UN

fin.
In the light of the facts form above point and Theorem 1.3(5) we get [cf.

5, Theorem 2.5 and a remark at the end of Section 2]:

Theorem 2.8. 1. K45 is determined by the following classes: sU, psU,
{F∅} ∪ psU+, {F∅} ∪ sUw+, {F∅} ∪ sUw+

fin , sUwN

fin .

2. KB4 is determined by the classes: {F∅} ∪ U, {F∅} ∪ Ufin, {F∅} ∪ UN

fin.

3. KD45 is determined by the classes: sU+, psU+, sUw+, sUw+

fin , sUwN

fin \{F∅}.
Proof. Ad 1. In virtue of Theorem 1.3(5), K45 is determined by the class
of all transitive Euclidean frames. By Lemma 2.1, this class includes the
following sequence of classes: sU � psU � {F∅} ∪ psU+

� {F∅} ∪ sUw+.
Therefore in virtue of Fact 2.4, Corollary 2.3(2), and Lemmas 2.2(7) and 2.5,
K45 is determined by {F∅} ∪ sUw+. By filtrations, K45 is determined both
by {F∅} ∪ sUw+

fin and sUwN

fin .
Ad 2. In virtue of Theorem 1.3(5), KB4 is determined by the class of

all symmetric transitive (Euclidian) frames. By Lemma 2.1, this class in-
cludes the class {F∅} ∪ U. Therefore in virtue of Fact 2.4, Corollary 2.3(3)
and Lemma 2.2(6), KB4 is determined by {F∅} ∪ U. By filtrations, KB4 is
determined both by {F∅} ∪ Ufin and {F∅} ∪ UN

fin.
Ad 3. In virtue of Theorem 1.3(5), KD45 is determined by the class of

all serial transitive Euclidean frames. By Lemma 2.1, this class includes the
following sequence of classes: sU+

� psU+
� sUw+. Therefore in virtue of

Fact 2.4, Corollary 2.3(4), and Lemmas 2.2(7) and 2.5, KD45 is determined
by sUw+. By filtrations, KD45 is determined both by sUw+

fin and sUwN

fin \{F∅}.

Now we get a new determination theorem for S5 ⊕ (Altn) and normal
logics of each of the following forms: KX ⊕ (Altn), KX ⊕ (Taltn) and
KX ⊕ {Altn, Taltm}, where X = 45, B4, D45 and n > m. For S5 ⊕ (Altn)
see also Theorem 1.2(8).

For a shorter formulation of theorems, for any n > 0, let Un and U�n

be the sets of universal frames with cardinality equal to n and less than or
equal to n (i.e., CardW = n and CardW � n), respectively. Now let UN

�n
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be the set of universal frames based on {1, . . . , k}, for any k ∈ {1, . . . , n}.
We have UN

�n � U�n and UN

�n � UN

fin.
Furthermore, for any n > 0, let sUn and sU�n be the set of semi-universal

frames having cardinality equal to n and less than or equal to n, respectively.
By analogy, we define the appropriate classes of properly semi-universal
frames psUn and psU�n. We put sUw

n := sUw ∩ sUn, sUw

�n := sUw ∩ sU�n

and sUwN

�n := sUwN

fin ∩ sUw

�n, i.e., sUwN

�1 = {F∅} and for n � 2, sUwN

�n is
the set of frames of the form 〈{1, . . . , k}, {1, . . . , k} × {2, . . . , k}〉, for any
k ∈ {2, . . . , n}.

Theorem 2.9. For arbitrary n, m > 0:9

1. S5 ⊕ (Altn) is determined by the following classes: U�n, UN

�n and Un,
as well by the single universal frame based on {1, . . . , n}.

2. K45 ⊕ (Altn) is determined by the class of semi-universal frames with
CardA � n. Furthermore, this logic is determined by the following
classes: the class of properly semi-universal frames with CardA = n
extended by the single frame F∅, U�n ∪ psU�n+1, psU�n+1, psUn+1,
{F∅}∪psU+

�n+1, {F∅}∪psU+

n+1, {F∅}∪sUw+

�n+1, {F∅}∪sUw+

n+1, sU
wN

�n+1,
as well by the pair of frames, F∅ and 〈{1, . . . , n + 1}, {1, . . . , n + 1} ×
{2, . . . , n + 1}〉.

3. KB4 ⊕ (Altn) is determined by the class of frames which are empty or
universal with CardW � n. Furthermore, this logic is determined by the
following classes: {F∅} ∪ U�n, {F∅} ∪ Un, {F∅} ∪ UN

�n, as well by the
pair of frames, F∅ and the universal frame based on {1, . . . , n}.

4. KD45⊕ (Altn) is determined by the class of semi-universal frames such
that 0 < CardA � n. Furthermore, this logic is determined by the follow-
ing classes: the class of properly semi-universal frames with CardA = n,
U�n ∪ psU+

�n+1, psU
+

�n+1, psU
+

n+1, sU
w+

�n+1, sU
w+

n+1, sU
wN

�n+1\{F∅}, as
well by the single frame 〈{1, . . . , n + 1}, {1, . . . , n + 1} × {2, . . . , n + 1}〉.

5. K45⊕(Taltm) is determined by the class of semi-universal frames which
are universal or have CardA � m. Furthermore, this logic is deter-
mined by the classes: {F∅}∪U∪psU+

�m+1, {F∅}∪U∪ sUw+

�m+1, {F∅}∪
U ∪ sUw+

m+1, UN

fin ∪ sUwN

�m+1, (UN

fin\UN

�m) ∪ sUwN

�m+1, as well by the set

9Note that S5 = KD45 ⊕ (Tq) = S5 ⊕ (Tq) = S5 ⊕ (Taltm), KB4 = K45 ⊕ (Tq) =
KB4⊕(Tq) = KB4⊕(Taltm) and KB4⊕{Altn, Tq} = KB4⊕{Altn, Taltm} = KB4⊕(Altn).
Furthermore, if m � n then K ⊕ {Altn, Taltm} = K ⊕ (Altn).
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UN

fin\UN

�m extended by the pair of frames, F∅ and 〈{1, . . . , m + 1},

{1, . . . , m + 1} × {2, . . . , m + 1}〉.
6. KD45 ⊕ (Taltm) is determined by the class of semi-universal frames

which are universal or have 0 < CardA � m. Furthermore, this logic is
determined by the classes: U∪psU+

�m+1, U∪sUw+

�m+1, U∪sUw+

m+1\{F∅},
UN

fin∪sUwN

�m+1, (UN

fin\UN

�m)∪sUwN

�m+1\{F∅}, as well by the set UN

fin\UN

�m

extended by the single frame 〈{1, . . . , m+1}, {1, . . . , m+1}×{2, . . . , m+
1}〉.

Moreover, if n > m:
7. K45⊕{Altn, Taltm} is determined by the class of semi-universal frames

which are universal with CardW � n or have CardA � m. Further-
more, this logic is determined by the following classes: U�n ∪psU�m+1,
{F∅} ∪U�n ∪ psU+

�m+1, {F∅} ∪Un ∪ psU+

m+1, {F∅} ∪U�n ∪ sUw+

�m+1,
{F∅}∪Un ∪ sUw+

m+1, UN

�n ∪ sUwN

�m+1, as well by the triple of frames, F∅,
〈{1, . . . , n}, {1, . . . , n}×{1, . . . , n}〉 and 〈{1, . . . , m+1}, {1, . . . , m+1}×
{2, . . . , m + 1}〉.

8. KD45 ⊕ {Altn, Taltm} is determined by the class of semi-universal
frames which are universal with CardW � n or have 0 < CardA � m.
Furthermore, this logic is determined by the classes: U�n ∪ psU+

�m+1,
Un ∪ psU+

m+1, U�n ∪ sUw+

�m+1, Un ∪ sUw+

m+1, UN

�n ∪ sUwN

�m+1\{F∅},
as well by the pair of frames, 〈{1, . . . , n}, {1, . . . , n} × {1, . . . , n}〉 and
〈{1, . . . , m + 1}, {1, . . . , m + 1} × {2, . . . , m + 1}〉.

Remark 2.1. 1. S5⊕ (C0) = S5⊕{Alt1, Tq} = S5⊕ (Alt1) and for any n > 0:
S5 ⊕ (Cn) = S5 ⊕ {Altn+1, Taltn} = S5 ⊕ (Altn+1) (see Remark 1.3).

2. KD45 ⊕ (C0) = KD45 ⊕ {Alt1, Tq} = S5 ⊕ (Alt1) and for any n �
1: KD45 ⊕ (Cn) = KD45 ⊕ {Altn+1, Taltn}. So for any n � 1, the logic
KD45⊕ (Cn) is determined by the pair of frames: 〈{1, . . . , n+1}, {1, . . . , n+
1} × {1, . . . , n + 1}〉 and 〈{1, . . . , n + 1}, {1, . . . , n + 1} × {2, . . . , n + 1}〉.

3. KB4 ⊕ (C0) = KB4 ⊕ {Alt1, Tq} = KB4 ⊕ (Alt1) and for any n � 1:
KB4 ⊕ (Cn) = KB4 ⊕ {Altn+1, Taltn} = KB4 ⊕ (Altn+1).

4. K45 ⊕ (C0) = K45 ⊕ {Alt1, Tq} = KB4 ⊕ (Alt1) and for any n � 1:
K45⊕ (Cn) = K45⊕{Altn+1, Taltn}. So for any n � 1, the logic K45⊕ (Cn)
is determined by the triple of frames: F∅, the universal frame based on
{1, . . . , n+1} and the frame 〈{1, . . . , n+1}, {1, . . . , n+1}×{2, . . . , n+1}〉.

Proof of Theorem 2.9 Ad 1. Theorem 1.2(8) says that S5 ⊕ (Altn) is
determined by the class U�n. This class includes the classes UN

�n and Un.
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Therefore, by Lemma 2.6, this logic is determined by Un, as well by the
single universal frame based on the set {1, . . . , n}.

Ad 2. In virtue of Theorem 1.3(5), K45 ⊕ (Altn) is determined by the
class of transitive Euclidean frames such that for any x ∈ W , CardR[x] � n.
Hence, by virtue of Lemmas 2.1(5), 2.2(7), 2.5 and 2.7, Corollary 2.3(2) and
Fact 2.4, this logic is determined by the listed classes.

Ad 3. In virtue of Theorem 1.3(5), KB4 ⊕ (Altn) is determined, respec-
tively, by the class of symmetric Euclidean frames such that for any x ∈ W ,
CardR[x] � n. Hence, by Lemmas 2.1(5), 2.2(6) and 2.6, Corollary 2.3(3)
and Fact 2.4, this logic is determined by the listed classes.

Ad 4. In virtue of Theorem 1.3(5), KD45 ⊕ (Altn) is determined by
the class of serial transitive Euclidean frames such that for any x ∈ W ,
CardR[x] � n. Hence, by Lemmas 2.1(5), 2.2(7), 2.5 and 2.7, Corollary 2.3(4)
and Fact 2.4, this logic is determined by the listed classes.

Ad 5. In virtue of Theorem 1.3(5), K45 ⊕ (Taltm) is determined by the
class of transitive Euclidean frames, where for any x ∈ W either x R x
or CardR[x] � m. Hence, by Lemmas 2.1(6), 2.2(7), 2.5 and 2.7, Corol-
lary 2.3(2) and Fact 2.4, this logic is determined by the listed classes.

Ad 6. In virtue of Theorem 1.3(5), KD45⊕ (Taltm) is determined by the
class of serial transitive Euclidean frames, where for any x ∈ W either xRx
or CardR[x] � m. Hence, by virtue of Lemmas 2.1(6), 2.2(7), 2.5 and 2.7,
Corollary 2.3(4) and Fact 2.4, this logic is determined by the listed classes.

Ad 7. In virtue of Theorem 1.3(5), K45 ⊕ {Altn, Taltm} is determined
by the class of transitive Euclidean frames, where ∀x∈W CardR[x] � n and
∀x∈W (xRx or CardR[x] � m). So, by Lemma 2.1(5,6), Corollary 2.3(2) and
Fact 2.4, this logic is determined by the class of semi-universal frames such
that either CardA � m or both W = A and CardW � n. Hence, by virtue
of Lemmas 2.2(7), 2.6 and 2.7, this logic is determined by the listed classes.

Ad 8. In virtue of Theorem 1.3(5), KD45 ⊕ {Altn, Taltm} is determined
by the class of serial transitive Euclidean frames, where ∀x∈W CardR[x] � n
and ∀x∈W (xRx or CardR[x] � m). So, by Lemma 2.1(5,6), Corollary 2.3(4)
and Fact 2.4, this logic is determined by the class of non-empty semi-
universal frames where either CardA � m or both W = A and CardW � n.
Hence, by virtue of Lemmas 2.2(7), 2.6 and 2.7, this logic is determined by
the listed classes.

2.3. Simplified Frames for Normal Extensions of K45

In the light of the following lemma, any semi-universal frame 〈W, R〉 may
be identified with a simplified frame of the form 〈W, A〉, where W is a non-
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empty set and A is a subset of W . If A = W then we call 〈W, A〉 universal.
If A �= ∅ then we call 〈W, A〉 non-empty. If A = ∅ we call 〈W, ∅〉 empty.
As already mentioned in footnote , empty semi-universal frames and empty
frames are identical. Instead of empty frames we can use the empty frame F∅.

On any simplified frame 〈W, A〉 we construct a simplified model 〈W, A,
V 〉, where V is a function which to any pair built out of a formula and
a world from W assigns a truth-value with respect to A. More precisely,
V : For×W → {0, 1} preserves classical conditions for truth-value operators
and for any ϕ ∈ For and x ∈ W :
(VA

� ) V (�ϕ, x) = 1 iff ∀y∈A V (ϕ, y) = 1.

Lemma 2.10 (5, Lemma 2.6). Let W be a non-empty set, A ⊆ W and
v : At × W → {0, 1}. Moreover,

• let 〈W, W ×A, V 〉 be a semi-universal model in which V is the extension
of v by conditions for truth-value operators and (VR

� ) for R = W × A;

• let 〈W, A, V ′〉 be a simplified model in which V ′ is the extension of v by
classical conditions for truth-value operators and (VA

� ) for A.

Then V = V ′. Thus, the semi-universal model 〈W, W × A, V 〉 may be iden-
tified with the simplified model 〈W, A, V ′〉.

In the light of Theorem 2.8 and Lemma 2.10 we obtain that the logics
K45, KB4 (= KB5) and KD45 are determined by suitable special classes
of simplified frames [see 5, Theorem 2.5]. Simply, in Theorem 2.8 we re-
place a given class C of semi-universal frames with the following class
SC := {〈W, A〉 : 〈W, W × A〉 ∈ C} of simplified frames.

Moreover, in virtue of Theorem 2.9 and Lemma 2.10 we obtain that
also logics from the theorem are determined by special classes of simpli-
fied frames. Again it is enough to replace the term ‘semi-universal’ with
the term ‘simplified’ and the class C of semi-universal frames with the
class SC of suitable simplified frames. If C is a class composed of universal
frames, then as a name of SC we can take the same name as for C . In other
cases, if C has one of the names used in Theorems 2.8 and 2.9, then the
name of SC can be obtained by replacing ‘sU’ (resp. ‘psU’) with ‘S’ (resp.
‘pS’).

Obviously, the logics S5, Triv and Ver are also determined by special
classes of simplified frames (cf. Theorem 1.3): S5 is determined by the class
of finite universal simplified frames; Triv and Ver are determined by the
single universal simplified frame F1 and the single empty frame F∅, respec-
tively.
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3. Versions of Nagle’s Fact for the Remaining Logics

In [5] to each of logics K45, KB4 (= KB5) and KD45 is assigned a suitable
class consisting of finite semi-universal frames which satisfy conditions for
normal extensions of K5 presented by Nagle in [2].

Nagle’s Fact (2, p. 325). Every normal logic containing (5) is determined
by a set consisting of finite Euclidean frames 〈W, R〉 which satisfy one and
only one of the following conditions:
(a) W is a singleton and R = ∅,

(b) R = W × W ,

(c) there is a unique “initial” world w ∈ W such that (W\{w})× (W\{w})
is included in R and w R x, for some x ∈ W\{w}.

For all normal extensions of the logic K45 condition (c) can be replaced
by the following:
(c′) W is not a singleton and there is a w ∈ W such that R = W ×(W\{w}).

Lemma 3.1. 1. Every frame satisfying (c′) also satisfies (c).

2. Every properly semi-universal frame satisfying (c) also satisfies (c′).

Proof. Ad 1. Suppose that 〈W, R〉 satisfies (c′). Then W\{w} �= ∅, the
product (W\{w})× (W\{w}) is included in the product W × (W\{w}) and
w R x, for any x ∈ W\{w}. So 〈W, R〉 satisfies (c).

Ad 2. Suppose that 〈W, R〉 satisfies (c) and R = W ×A, for some A � W .
Then W\{w} �= ∅; and so W is not a singleton. Moreover, W\{w} ⊆ A
� W . So also A ⊆ W\{w}.

Notice that only one of conditions (a), (b), (c′) can be met. Therefore,
instead of ‘satisfy one and only one of conditions (a), (b) and (c′)’ we may
just write ‘satisfy one of conditions (a), (b) and (c′)’. Obviously, instead of
empty frames satisfying condition (a) we can use the single frame F∅, the
frames satisfying (b) are universal and the properly semi-universal frames
satisfying (c′) are the frames from sUw+.

In the light of Nagle’s Fact we obtain that a normal logic is a normal
extension of K45 iff it is determined by a subclass of the class of all semi-
universal frames. Moreover, also for KB4, KD45 and S5 we obtain similar
results with respect to suitable classes of semi-universal or universal frames.

Theorem 3.2. 1. A normal extension of K45 is determined by a subclass
of sUfin. Furthermore, a normal extension of K45 is determined by
suitable subclasses of the classes: {F∅} ∪ Ufin ∪ sUw+

fin and UN

fin ∪ sUwN

fin .
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2. A normal extension of KB4 is determined by a subclass of the class
{F∅} ∪Ufin. Furthermore, a normal extension of KB4 is determined by
suitable subclass of {F∅} ∪ UN

fin.

3. A normal extension of KD45 is determined by a subclass of sU+

fin. Fur-
thermore, a normal extension of KD45 is determined by suitable sub-
classes of the following classes: Ufin ∪ sUw+

fin and UN

fin ∪ sUwN

fin \{F∅}.
4. A normal extension of S5 is determined by a subclass of Ufin. Further-

more, a normal extension of S5 is determined by a subclass of UN

fin.

Remark 3.1. For a normal extension of K45 (resp. KD45) we can not apply
such simplifications of the classes of frames as for the logic K45 (resp. KD45)
in Theorem 2.8. Indeed, for example, KB4 and S5 are normal extensions of
K45; and S5 is a normal extension of KD45.

Proof of Theorem 3.2 Ad 1. Let Λ be a normal extension of K45. Then,
by virtue of Nagle’s Fact, Λ is determined by a subset C of the set of finite
Euclidean frames which satisfy one and only one of conditions (a)–(c). We
prove that any frame of C is either empty or belongs to Ufin ∪ sUw+

fin . In
fact, if 〈W, R〉 ∈ C , then R is transitive, because (4) is valid in 〈W, R〉. We
must consider only the case when 〈W, R〉 satisfies condition (c), i.e., there
is a w ∈ W such that (W\{w}) × (W\{w}) ⊆ R and for some x ∈ W\{w}
we have w R x. Then W is not a singleton and for any y ∈ W\{w} we have
w R y, since w R x and x R y. So W × (W\{w}) ⊆ R.

Now assume for a contradiction that there is a y ∈ W\{w} such that yRw.
Then, by the transitivity of R, for any z ∈ W\{w} we have zRw, since zRy
and y R w. Moreover, w R w, since w R y and y R w. Hence R = W × W . So
we obtain a contradiction: R satisfies (b). Thus, R = W × (W\{w}).

Ad 2. Let Λ be a normal extension of KB4. Then, by point 1, Λ is deter-
mined by a subset C of frames which are empty or belong to Ufin ∪ sUw+

fin .
We prove that any frame of C is either empty or universal. In fact, if
〈W, R〉 ∈ CΛ, then R is symmetric and transitive, because (B) and (4)
are valid in 〈W, R〉. Assume for a contradiction that 〈W, R〉 satisfies con-
dition (c′), i.e., W is not a singleton and there is a unique w ∈ W such that
R = W × (W\{w}). But w R w, since for any x ∈ W\{w} we have w R x
and x R w. So we obtain a contradiction.

Ad 3. Let Λ be a normal extension of KD45. Then, by point 1, Λ is
determined by a subset C of frames which are empty or belong to Ufin∪sUw+

fin .
We show that C ⊆ Ufin ∪ sUw+

fin . In fact, if 〈W, R〉 ∈ C , then R is serial,
because (D) is valid in 〈W, R〉. Hence R �= ∅.
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Ad 4. Let Λ be a normal extension of S5. Then, by point 3, Λ is determined
by a subset C of Ufin∪sUw+

fin . We show that C ⊆ Ufin. In fact, if 〈W, R〉 ∈ C ,
then R is symmetric, because (B) is valid in 〈W, R〉. Hence 〈W, R〉 does not
satisfy condition (c′).

In the light of Theorems 1.2(8), 3.2(2) and 3.2, and Lemma 2.1, we can
prove the following:

Theorem 3.3. For arbitrary n, m > 0:
1. A normal extension of S5 ⊕ (Altn) is determined by a subset of U�n.

2. A normal extension of K45 ⊕ (Altn) is determined by a subclass of
the class of finite semi-universal frames with CardA � n. Furthermore,
a normal extension of K45 ⊕ (Altn) is determined by suitable subsets
of the following sets: {F∅} ∪ U�n ∪ sUw+

�n+1 and UN

�n ∪ sUwN

�n+1.

3. A normal extension of KB4 ⊕ (Altn) is determined by a subclass of
the class of finite frames which are empty or universal with CardW �
n. Furthermore, a normal extension of K45 ⊕ (Altn) is determined by
suitable subsets of the following sets: {F∅} ∪ U�n and {F∅} ∪ UN

�n.

4. A normal extension of KD45⊕(Altn) is determined by a subclass of the
class of finite semi-universal frames with 0 < CardA � n. Furthermore,
a normal extension of KD45 ⊕ (Altn) is determined by suitable subsets
of the sets: U�n ∪ sUw+

�n+1 and UN

�n ∪ sUwN

�n+1\{F∅}.
5. A normal extension of K45 ⊕ (Taltm) is determined by a subclass of

the class of finite semi-universal frames which are either universal or
have CardA � m. Furthermore, a normal extension of K45⊕(Taltm) is
determined by suitable subsets of the following sets: {F∅}∪Ufin∪sUw+

�m+1

and UN

fin ∪ sUwN

�m+1.

6. A normal extension of KD45 ⊕ (Taltm) is determined by a subclass
of the class of finite semi-universal frames which are either universal
or have 0 < CardA � m. Furthermore, a normal extension of K45 ⊕
(Taltm) is determined by suitable subsets of the following sets: Ufin ∪
sUw+

�m+1 and UN

fin ∪ sUwN

�m+1\{F∅}.
Moreover, if n > m:
7. A normal extension of K45⊕{Altn, Taltm} is determined by a subclass

of the class of finite semi-universal frames which are either universal
with CardW � n or have CardA � m. Furthermore, a normal extension
of K45⊕{Altn, Taltm} is determined by suitable subsets of the following
sets: {F∅} ∪ U�n ∪ sUw+

�m+1 and UN

�n ∪ sUwN

�m+1.
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8. A normal extension of KD45 ⊕ {Altn, Taltm} is determined by a sub-
class of the class of finite semi-universal frames which are either univer-
sal with CardW � n or have 0 < CardA � m. Furthermore, a normal
extension of KD45⊕{Altn, Taltm} is determined by suitable subsets of
the following sets: U�n ∪ sUw+

�m+1 and UN

�n ∪ sUwN

�m+1\{F∅}.

Proof. Ad 1. Let Λ be a normal extension of S5 ⊕ (Altn). Then Λ is also
a normal extension of KB4. So, by Theorem 3.2(2), Λ is determined by a
subset of {F∅} ∪ Ufin. Let 〈W, R〉 be a member of this subset. However,
R �= ∅, because (D) is valid in 〈W, R〉. Moreover, CardW � n, because
(Altn) is valid in 〈W, R〉.

Ad 2. Let Λ be a normal extension of K45 ⊕ (Altn). Then Λ is also
a normal extension of K45. So, by Theorem 3.2(1), Λ is determined by a
subset of {F∅} ∪Ufin ∪ sUw+

fin . Let 〈W, R〉 be a member of this subset. Then
R = W × A, where either A = ∅, or A = W , or A = W\{w}, for some
w ∈ W . However, CardA � n, because (Altn) is valid in 〈W, R〉.

Ad 3. Let Λ be a normal extension of KB4 ⊕ (Altn). Then Λ is also
a normal extension of KB4. So, by Theorem 3.2(2), Λ is determined by a
subset of {F∅} and Ufin. Let 〈W, R〉 be a member of this subset. However,
CardW � n, because (Altn) is valid in 〈W, R〉.

Ad 4. Let Λ be a normal extension of KD45 ⊕ (Altn). Then Λ is also
a normal extension of KD45. So, by Theorem 3.2(3), Λ is determined by a
subset of Ufin ∪ sUw+

fin . The rest as in the proof of point 2.
Ad 5. Let Λ be a normal extension of K45 ⊕ (Taltn). Then Λ is also

a normal extension of K45. So, by Theorem 3.2(1), Λ is determined by a
subset of {F∅} ∪Ufin ∪ sUw+

fin . Let 〈W, R〉 be a member of this subset, where
R = W × A, for some A ⊆ W . Because (Taltn) is valid in 〈W, R〉, we
have ∀x∈W (x R x or CardR[x] � n). Hence, A = W or CardA � n, by
Lemma 2.1(6). Moreover, either A = ∅, or A = W , or A = W\{w}, for
some w ∈ W . So either A = ∅, or A = W , or CardW � n + 1.

Ad 6. Let Λ be a normal extension of KD45 ⊕ (Taltn). Then Λ is also
a normal extension of KD45. So, by Theorem 3.2(3), Λ is determined by a
subset of Ufin ∪ sUw+

fin . The rest as in the proof of point 5.
Ad 7. Let Λ be a normal extension of K45 ⊕ {Altn, Taltm}. Then Λ is

also a normal extension of K45. So, by Theorem 3.2(1), Λ is determined
by a subset of {F∅} ∪ Ufin ∪ sUw+

fin . Let 〈W, R〉 be a member of this subset,
where R = W × A, for some A ⊆ W . Because (Altn) is valid in 〈W, R〉, we
have CardA � n. Because (Taltm) is valid in 〈W, R〉, we have ∀x∈W (xRx or
CardR[x] � m). Hence, A = W or CardA � m, by Lemma 2.1(6). Moreover,
either A = ∅, or A = W , or A = W\{w}, for some w ∈ W . So either A = ∅,
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or both A = W and CardW � n, or both A = W and CardW � m, or both
A = W\{w} and CardA � m. Hence either 〈U, R〉 = F∅, or 〈U, R〉 ∈ U�n,
or 〈U, R〉 ∈ sUw+

�m+1.
Ad 8. Let Λ be a normal extension of KD45 ⊕ {Altn, Taltm}. Then Λ

is also a normal extension of KD45. So, by virtue of Theorem 3.2(3), Λ is
determined by a subset of the set Ufin ∪ sUw+

fin . The rest as in the proof of
point 7.

Furthermore, the following fact also occurs.

Fact 3.4. For arbitrary n, m > 0:
1. If a logic is determined by a subclass of sUfin then it is a normal exten-

sion of K45.

2. If a logic is determined by a subclass of {F∅} ∪Ufin then it is a normal
extension of KB4.

3. If a logic is determined by a subclass of sU+

fin then it is a normal exten-
sion of KD45.

4. If a logic is determined by a subclass of Ufin then it is a normal extension
of S5.

5. If a logic is determined by a subclass of U�n then it is a normal exten-
sion of S5 ⊕ (Altn).

6. If a logic is determined by a subclass of the class of finite semi-universal
frames with CardA � n, then it is a normal extension of K45⊕ (Altn).

7. If a logic is determined by a subclass of the class of finite frames which
are empty or universal with CardW � n, then it is a normal extension
of KB4 ⊕ (Altn).

8. If a logic is determined by a subclass of the class of finite semi-universal
frames with 0 < CardA � n, then it is a normal extension of KD45 ⊕
(Altn).

9. If a logic is determined by a subclass of the class of finite semi-universal
frames which are universal or have CardA � m, then it is a normal
extension of K45 ⊕ (Taltm).

10. If a logic is determined by a subclass of the class of finite semi-universal
frames which are universal or have 0 < CardA � m, then it is a normal
extension of KD45 ⊕ (Taltm).
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Moreover, if n > m:
11. If a logic is determined by a subclass of the class of finite semi-universal

frames which are either universal with CardW � n or have CardA � m,
then it is a normal extension of K45 ⊕ {Altn, Taltm}.

12. If a logic is determined by a subclass of the class of finite semi-universal
frames which are universal with CardW � n or have 0 < CardA � m,
then it is a normal extension of KD45 ⊕ {Altn, Taltm}.

Proof. Ad 1. If a logic is determined by a subclass of sUfin, then, it is nor-
mal and contains (4) and (5), since these formulas are valid in this subclass,
by Lemma 2.1(1).

Ad 2. If a logic is determined by a subclass of F∅ ∪Ufin, then it is normal
and contains (4), (5) and (B), since these formulas are valid in this subclass,
by Lemma 2.1(1,3).

Ad 3. If a logic is determined by a subclass of sU+

fin, then it is normal and
contains (4), (5) and (D), since these formulas are valid in this subclass, by
Lemma 2.1(1,4).

Ad 4. If a logic is determined by a subclass of Ufin, then it is normal
and contains (T) and (5), since these formulas are valid in this subclass, by
Lemma 2.1(1,2).

Ad 5. If a logic is determined by a subset of U�n, then it is normal and
contains (T), (5) and (Altn), since these formulas are valid in this subset,
by Lemma 2.1(1,2).

Ad 6. If a logic is determined by a subclass of the class of finite semi-
universal frames with CardA � n, then it is normal and contains (4), (5)
and (Altn), since these formulas are valid in this subclass, by Lemma 2.1(1).

Ad 7. If a logic is determined by a subclass of the class of finite frames
which are empty or universal with CardW � n, then it is normal and con-
tains (B), (4) and (Altn), since these formulas are valid in this subclass, by
Lemma 2.1(1,3) and the assumption.

Ad 8. If a logic is determined by a finite subclass of the class of semi-
universal frames with 0 < CardA � n, then it is normal and contains
(D), (4), (5) and (Altn), since these formulas are valid in this subclass,
by Lemma 2.1(1,4) and the assumption.

Ad 9. If a logic is determined by a subclass of the class of finite semi-
universal frames which are universal or have CardA � n, then it is normal
and contains (4), (5) and (Taltn), since these formulas are valid in this
subclass, by Lemma 2.1(1) and the assumption.
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Ad 10. If a logic is determined by a subclass of the class of finite semi-
universal frames which are universal or have 0 < CardA � n, then it is
normal and contains (D), (4), (5) and (Taltn), since these formulas are
valid in this subclass, by Lemma 2.1(1,4) and the assumption.

Ad 11. If a logic is determined by a subclass of the class of finite semi-
universal frames which are either universal with CardW � n or have CardA
� m, then it is normal and contains (4) and (5), since these formulas are
valid in this subclass, by Lemma 2.1(1). Moreover, by the assumption, in
any frame of this subclass either (Altm) is valid or both (T) and (Altn)
are valid. So both �(T) ∨ (Altm)� and �(Altn) ∨ (Altm)� are valid in all
frames of this subclass. Hence also both (Taltm) and (Altn) are valid in
this subclass. So (Taltm) and (Altn) belong to Λ.

Ad 12. If a logic is determined by a subclass of the class of finite semi-
universal frames which are either universal with CardW � n or have
0 < CardA � m, then it is normal and contains (D), (4) and (5), since these
formulas are valid in this subclass, by Lemma 2.1(1,4).

As already mentioned in the introduction and point 2.3, instead of a
semi-universal frame 〈W, R × A〉 we can use the simplified frame 〈W, A〉. So
instead of finite frames satisfying condition (c) we can use simplified frames
which satisfy the following condition corresponding to (c):
(c′′) W is not a singleton and there is a w ∈ W such that A = W\{w}.

It is easy to show that, as in point 2.3, also in Theorems 3.2 and 3.3 it is
enough to replace the term ‘semi-universal’ with the term ‘simplified’ and
the class C of semi-universal frames with the class SC of suitable simplified
frames. Furthermore, for these simplified frameworks we can use the names
proposed on Sect. 2.3.
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