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Abstract
Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with
atomic displacements in crystals. We show that it provides a novel approach to extract atomic
correlation functions. Using numerical calculations, we are able to reproduce the
temperature-dependent energy spectrum of the 115 ‘forbidden’ Bragg reflection in ZnO. Our
previous experimental studies showed that the intensity growth of such reflections over a wide
range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape.
This is the result of the interplay between the temperature-independent (TI) and
temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant
structure factor can be associated with the dipole–quadrupole contribution to the structure factor
and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which
provide additional temperature-dependent dipole–dipole tensor components to the structure
factor. By fitting the experimental data at various temperatures we have determined the
temperature dependences of autocorrelation 〈u2

x(Zn)〉 and correlation 〈ux(O)ux(Zn)〉 functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern synchrotron radiation sources allow the study of
a wide range of interesting and often complex phenomena
related to the anisotropic absorption, scattering, and diffraction
of x-rays near absorption edges. Resonant x-ray scattering
(RXS) [1–5] has become, in the last two decades, a popular
method for studying local properties of crystals. ‘Forbidden’
reflections in RXS are extremely sensitive both to the state
of the scattering atom and to surrounding atoms, and are
very selective because they occur only near element-specific
absorption edges. Such reflections were first described
theoretically in [6, 7] and observed by Templeton and
Templeton [8]. To date, ‘forbidden’ reflections have been
studied experimentally in many crystals. They can be
considered as a powerful tool for determining important crystal
properties like environment-induced distortions of excited

4 Present address: SIMaP, CNRS-Grenoble-INP, 38402 Saint-Martin d’Heres,
France.

electronic states or details of charge, magnetic, and orbital
ordering in solids [1, 9, 10].

The sensitivity of RXS to local anisotropy arises
from multipole electronic transitions and is hence described
in terms of scattering tensors of various rank. The
strongest contributions to pure resonant reflections are
provided by dipole–dipole scattering (the electric dipole
approximation). Beyond this, there are numerous physical
phenomena contributing to the resonant reflections. Higher
order contributions, such as dipole–quadrupole [11–13]
or quadruple–quadrupole [9, 14] become important when
the dipole–dipole contribution vanishes due to symmetry.
Contributions associated with thermal vibrations (thermal
motion induced, or TMI effect) and point defects were
predicted in [15, 16]. The TMI effect can be observed when
the dipole–dipole contribution to the forbidden reflections
associated with the average crystal structure vanishes, but in
fact the symmetry of the resonant atomic sites is violated owing
to the atomic thermal displacements. Forbidden reflections

0953-8984/10/355404+08$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA1

http://dx.doi.org/10.1088/0953-8984/22/35/355404
mailto:ovtchin@gmail.com
http://stacks.iop.org/JPhysCM/22/355404


J. Phys.: Condens. Matter 22 (2010) 355404 E N Ovchinnikova et al

arising from TMI effect have been observed in Ge [21–23],
ZnO [24] and GaN [25].

The possibility of forbidden reflections caused either by
TMI or dipole–quadrupole scattering were first predicted by
phenomenological considerations, which were based on the
symmetry properties of the atomic scattering tensor and rather
simple models of atomic vibrations. Despite its simplicity, this
approach allowed for a qualitative description of not only the
azimuthal dependence of forbidden reflections (the variation
in intensity with rotation about the scattering vector) but also
of their thermal behavior. The remarkable increase with
temperature of the h00, h = 4n + 2 forbidden reflections in
Ge and the hhl, l = 2n + 1 forbidden reflections in ZnO,
contrary to the usual decrease of ‘allowed’ (normal) reflections,
show that the TMI mechanism plays the dominant role in
the excitation of such reflections. This phenomenological
approach, as used in [21, 22, 24], explains the main features
of the reflections and considers interference between dipole–
quadrupole and TMI contributions to the structure factor
tensor.

The phenomenological approach to anisotropic resonant
diffraction is surprisingly robust; however, a quantitative
interpretation of the experimental spectra requires numerical
simulation of the various resonant scattering mechanisms. It
is very important that, unlike the traditional x-ray optics,
the atomic x-ray scattering factor near absorption edges
depends on its environment, which is taken into account
in the theory by considering multiple electron scattering by
surrounding atoms. The construction of a microscopic theory
of resonant anisotropic scattering encounters a number of
difficulties associated mainly with the necessity of introducing
into consideration electronic states and potentials that describe
the excited state of the system.

While some attempts have been undertaken to make
quantitative calculations of the TMI contribution to forbidden
reflections at various temperatures using the tensor coefficients
calculations [42, 43] and molecular dynamics simulation
of the transient atomic configurations [30], they have not
completely explained the observed changes in energy spectra
with temperature. The aim of the present paper is to clarify the
role of zinc and oxygen atomic displacements in the forbidden
reflection energy spectra observed in ZnO crystals.

2. Theoretical

In the kinematic diffraction theory, which is usually applied
to forbidden reflections, the energy dependence of intensity
IH(E) is determined by the energy dependences of tensor
structure factor F̂H(E) and absorption coefficient μ(E) [26]:

IH(E) ∼ e−2M |e′∗ F̂H(E,k,k′)e|2/μ(E) (1)

where H is reciprocal lattice vector of the forbidden reflection,
e,k and e′,k′ are polarization and wavevectors of respectively
the incident and diffracted beams (Bragg geometry, with the
crystal surface normal to H , was assumed), and e−2M is the
Debye–Waller factor. The absorption coefficient μ(E) can be
written as a sum of the nonresonant, dipole and quadrupole
terms [20]. The last two terms depend on beam polarizations;

their anisotropic part usually weaker than their isotropic part
(see, for example, discussion in [27]). Although strong linear
dichroism has been observed in ZnO [28], we shall ignore this
anisotropic part and use the absorption spectrum determined
from a powder absorption experiment.

The tensor structure factor F̂H(E,k,k′) depends not only
on the energy but also, for dipole–quadrupole and quadrupole–
quadrupole scattering, on the wavevectors of the incident and
diffracted waves. It is given by the sum over the atomic
scattering factors f̂ (E,k,k′) of all resonant atoms in the
unit cell, taking into account the different orientations of
those atoms, and the phase factors corresponding to their
positions. The tensor properties of atomic scattering factors
near absorption edges have been considered in many studies,
using either the Cartesian approach [17, 18] or (equivalently),
spherical tensors [3, 9, 19, 20]. In the present paper we
shall adopt the Cartesian formalism. Within this framework,
the resonant scattering can be written as a sum of the main
contributing multipoles, leading to a superposition of tensors
of various rank,

f ′
jk+i f ′′

jk =
[

D jk− i

2
(km I jkm−k ′

m I ∗
k jm)+ 1

4
k ′

mkn Q jkmn

]
(2)

where the summation over repeated indices is implied. Thus,
in non-magnetic ZnO crystal, the resonant scattering tensor
consists only of the second rank dipole–dipole tensor D,
the third rank dipole–quadrupole (interference) tensor I , and
the fourth rank quadrupole–quadrupole tensor Q, all of them
possessing tensor elements that are sensitive to the incident
radiation energy. In most cases, the intensity of forbidden
reflections is dominated by the dipole–dipole contribution.
However, when this contribution vanishes, e.g. due to crystal
symmetry, higher order terms play an essential role. It was
shown earlier that the symmetric part of the time-even dipole–
quadrupole tensor gives rise to forbidden reflections in Ge and
ZnO [11, 21, 22, 24].

It is well known that aspherical charge density and
anisotropy of atomic thermal vibrations, give rise to
the formation of ‘quasi’-forbidden reflections, e.g., the
corresponding contributions to the 222-type reflections were
recorded in the diamond structure [31, 32]. These phenomena
do not change the extinction rules due to glide planes and screw
axes. Thermal motion of atoms, however, can give rise to
the anisotropy of the resonant atomic factor and thus invalid
these extinction rules [15, 16]. The atomic scattering tensor
f jk is determined by the atomic electrons, which follows the
nuclear motion (so-called adiabatic approximation). Owing to
thermal and zero-point motion, each atom is displaced from
its average high symmetry position to positions with generally
no symmetry. Because the typical time of resonant x-ray
scattering is much less than the time of thermal vibrations,
the transient atomic configuration is fixed during the scattering
process.

To calculate the resonant structure factor we need to carry
out the calculations for each transient atomic configuration and
then to average over all configurations:

Fi j =
∑

s

〈 f s
i j exp iHrs〉. (3)
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Figure 1. ZnO unit cell.

where the sum is over all resonant atoms in the unit cell. In the
presence of small atomic displacements the transient atomic
scattering tensor can be written as follows:

fi j = f 0
i j + �N

p=0 f p
i jku p

k , (4)

where f 0
i j is an atomic scattering tensor corresponding to

the average atomic position, f p
i jk is a correction to the

average atomic tensor provided by the pth atom displacement,
p = 0 corresponds to the resonant atom itself, and N is a
number of neighboring atoms, whose displacements influence
significantly the resonant atomic tensor. This model was
successfully used to describe the thermal growth of the 006
reflection in Ge [30, 33]. One can insert (4) into (3), and taking
into account that up = rp − rp

0 , we obtain the dipole–dipole
contribution to the atomic tensor which (remarkably) does not
vanish after averaging and is responsible for TMI effect.

3. Pure resonant reflections in zinc oxide

Zinc oxide has a wurtzite structure described by the space
group P63mc. Zn and O atoms lie on 2(b) positions with 3m
symmetry (figure 1). Each Zn atom is surrounded by an oxygen
tetrahedron, whose apical length (1.985 Å) differs slightly
from other distances (1.973 Å). The temperature behavior of
ZnO, such as its thermal expansion and its Debye–Waller factor
e−2M , was studied both experimentally [34] and using ab initio
calculations [35]. For the calculations below, we shall use the
structural parameters reported in [34]. At room temperature
they are: a = 3.2499 Å, c = 5.2065 Å, u = 0.3819 (u is the
apical length of the Zn–O tetrahedra, i.e. the z coordinate of
oxygen atoms, in crystallographic cell units). Phonon spectra
in wurtzite have also been well studied [36–40]. Below we
shall use these data for the simulation of resonant forbidden
reflections.

The 115 forbidden reflection in ZnO was studied at
various temperatures in [24]. It was found, that its energy
spectrum varies strongly with temperature. Not only does its
intensity increase, but also the shape of the spectrum changes
dramatically. A simple theoretical model was used in [24]

to describe the phenomenon, with structure factor that can be
written:

I (H) =
∣∣∣∣A(E)ei�(E) + B(E) coth

(
h̄ω0

2kT

)∣∣∣∣
2

e−2M , (5)

where A(E) and B(E) represent energy-dependent scalar
amplitudes for the temperature-independent (TI) and TMI
scattering components. �(E) is the relative phase angle
between the two components. All these quantities are assumed
to be independent of temperature. A single low-lying optical
phonon mode of energy h̄ω0 = 12.4 meV was assumed at the
�-point and it was pointed out that a change in the h̄ω0 value is
strongly correlated with the scaling of B . This model describes
the experimental results well, but the phase factor �(E) looks
nontrivial. Below we shall use numerical calculations to fit
the energy spectra and establish the thermal growth of the TI
and TMI contributions. Both contributions provide the same
azimuthal dependence of the reflection intensity IH , therefore
we shall compare the energy spectra of zinc oxide at various
temperatures for fixed azimuthal angle.

Below all tensors are written in the Cartesian frame-
work [29] with z along the c-axis, x along the a-axis and y
in the mirror plane. The 3m symmetry of the Zn site provides
the diagonal uniaxial form of the dipole–dipole tensor atomic
factor, which cancels out at the forbidden reflections. In [24]
it was shown that the structure factor of the hhl forbidden
reflection contains only one nonzero component and can be
written as:

Fi j (hhl) ∼ h(δ + �5
m=1 fmu2

m)

( 0 1 0
1 0 0
0 0 0

)
(6)

where m corresponds to the optical phonon modes at the �

point of the Brillouin zone, δ and fm are complex phenomenal
coefficients, and u2

m are the correlation functions.
It is important to note that, not only displacements of the

resonant atom itself influence the resonant atomic factor of Zn,
but also displacements of neighboring atoms give significant
contributions. Among the five optical modes at the � point,
two of them describe atomic vibrations along the c-axis, and
the three others in the ab-plane. The vibration modes along
the c-axis respect the 3m symmetry and hence do not enable
the dipole–dipole contribution. Atomic displacements in the
mirror plane do not contribute to TMI either and thus only
displacements along a are relevant [43]. When we displace
either Zn atom itself or the neighboring atoms along the a-
axis, the tensor component f dd

xy appears. We have calculated
its contribution numerically using the FDMNES code [41]
which is well suited to RXS studies. The FDMNES code
does not allow direct calculation of the TMI effect, because
it is necessary to provide explicitly the transient atomic
displacements. These displacements can be obtained using ab
initio codes for molecular dynamics. First calculations using
this approach were recently made [30] and gave satisfactory
results up to room temperature. Nevertheless it is not clear
in such approach which vibration modes dominate the TMI
effect. In the present paper we shall analyze the forbidden

3
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Figure 2. Real and imaginary parts of f dd
xy , which appear owing to

the Zn and O displacements along x-axis equal to 0.001 of the lattice
parameter a. The dipole–quadrupole component f dq

xyx , calculated for
equilibrium atomic position, is also shown.

reflection spectra reconstruction using the calculation of the
tensor structure factor components.

We have calculated those contributions to the tensor
components f dd

xy , which appear owing to small displacements
along the x-axis (ux = 0.001a) of the resonant atom itself,
the four surrounding oxygens and the twelve zinc atoms at
the second coordination sphere. This way we have calculated

the derivatives
∂ f dd

x y

∂u p
x

needed for the TMI effect. The real
and imaginary parts of these contributions are shown in
figure 2. In the same figure we show the real and imaginary
parts of the dipole–quadrupole (TI) contribution to the atomic
scattering tensor, which provides non-vanishing components to
the F(hhl).

The FDMNES code at first calculates the matrix elements
describing the electron transition from the ground to the excited
state, which is then convoluted with the energy denominator
depending on the excited state width �(E). To determine �(E)

for ZnO we have fitted the absorption energy spectrum (see
figure 3).

To compare the calculations with the experimental spectra
of 115 reflection, it is necessary to take into account the
absorption (see (1)). For simplicity the experimental value
of e2M I (H)μ(E) was compared with |F(H)|2, which was
calculated using the FDMNES code. Figure 4 shows
experimental data of the variation of e2M I (H)μ(E) for the
115 reflection with temperature. We aim to reproduce not
only the thermal growth, but also the strong modification of
the lineshape with temperature.

4. Fitting the 115 reflection energy spectrum at
various temperatures

In [42] it was assumed that the displacement of Zn can
be represented as the sum over various optical modes.
However, the resonant atomic tensor is affected not only
by displacements of the resonant atom itself, but also by
displacements of the surrounding atoms. In [42] an attempt

Figure 3. Absorption: experiment versus FDMNES calculation.

Figure 4. Temperature dependence of e2MμI (hkl) ∼ |F(H)|2 for
the 115 reflection obtained from the experimental data.

to take into account oxygen displacements was made. It was
shown that three optical vibration modes mainly influence
the forbidden reflection spectrum. Their contributions to the
structure tensor factor component at various temperatures were
in agreement with the mode frequencies. Nevertheless, this
approach took into account only the � point, while other
points of reciprocal space can also give a contribution to the
autocorrelation and correlation functions. Below we shall not
suppose any definite model for atomic vibrations, but try to
determine the correlation function behavior with temperature
using the experimental results.

We have carried out computer simulations using
FDMNES in which we have displaced Zn itself, the four
surrounding oxygen atoms and the next Zn atoms. FDMNES
calculations confirm the linear dependence of the resonant
atomic tensor on atomic displacements given by (4). We
discovered that most of the contribution to the TMI amplitude
comes from the displacements of the absorbing atom itself and
from the three surrounding oxygen atoms in the basal plane
of the tetrahedron. The fourth oxygen atom, which lies on
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Figure 5. The correlation functions 〈u2
x (Zn)〉 and 〈u2

x (O)〉 obtained
in [35] and [34] and the thermal growth of the mean square
displacement corresponding to the low optical mode.

the same threefold axis as the resonant atoms, gives a very
small contribution to the vibration-induced anisotropy. The
next-shell Zn atoms were found to have little effect too. So,
there is a very limited number of atoms, whose displacements
essentially influence the resonant atomic tensor. Next, we
calculate the non-vanishing component of the tensor structure
factor as follows:

Fxy(115) = 2e−M

[
f dq
xyx + 〈u2

x(Zn)〉 ∂ fxy

∂ux(Zn)

+ �3
p=1〈ux(Zn)u p

x (O)〉 ∂ fxy

∂u p
x (O)

]
. (7)

The autocorrelation functions 〈u2
i 〉 were studied in

many papers [34, 35]. In figure 5 the autocorrelation
functions 〈u2

x(Zn)〉 and 〈u2
x(O)〉 calculated in [35] and

measured experimentally [34] are shown. The thermal growth
corresponding to the low-energy phonon mode is also given for
comparison.

It is difficult to separate those parts of the correlation
functions which correspond to optical vibrations alone. It
is known, that in the low-energy E2l vibration mode the
amplitude of Zn vibrations is larger than the oxygen vibration
while for E1 and E2h the situation is opposite. Because the
ratio of these amplitudes is known, the correlation functions
〈ux(O)ux(Zn)〉 can be determined. Nevertheless, there is
an uncertainty in the decomposition of the mean square
displacements into the parts corresponding to each mode
at various temperatures, leading to difficulties in using for
direct calculations. Consequently, to fit the experimental data
we assume the following expression for the structure factor
component:

Fxy(115) = 2e−M

[
f dq
xyx (E) + VZnZn(T )

∂ fxy(E)

∂ux(Zn)

+ VOZn(T )�3
p=1

∂ fxy(E)

∂u p
x (O)

]
(8)

where VZnZn(T ) and VOZn(T ) do not depend on E , but vary
with temperature. The dipole–quadrupole term is associated
with thermally independent part. In fact, it is not completely

independent of temperature. Calculations using the molecular
dynamics simulation of the displaced atomic sites have
shown that the dipole–quadrupole term slightly decreases with
temperature (more strongly than it would be expected from
the Debye–Waller factor). In simulations, we assume that
it decreases linearly, so that f dq

xyx (800 K) = 0.9 f dq
xyx(20 K).

Calculations also show that the sum over three oxygen
atoms does not depend significantly on the displacement
direction and can be described by only one energy-dependent
function.

Taking into account all known coefficients in equation (5)
we can find the ratio between the correlation functions and
the fitting coefficients: VZnZn(T ) = 780〈u2

x(Zn)〉, VOZn(T ) =
780〈ux(O)ux(Zn)〉. The Debye–Waller factor was fitted in
accordance with [34]. In [24], there were three energy-
dependent parameters, which may be varied to fit the 115
reflection energy spectra at various temperatures. There are
only two fitting parameters, VZnZn(T ) and VOZn(T ), in our
present analysis and they are physically quite well determined.
The ratio VZnZn(T )/VOZn(T ) is mainly responsible for the
spectral shape, while their absolute values determine the peaks
intensity. Figure 6 shows the spectral fits of the 115 reflection
for various temperatures in a wide range.

Figure 7 shows the TMI contribution to the 115
reflection intensity versus temperature together with the
dipole–quadrupole (temperature-independent) term. It follows
from this picture that the TMI contribution not only grows
with temperature, but its shape also changes, only slightly.
Let us note that the phenomenological parameters A(E) and
B(E) from [24] look very similar to the absolute values
of respectively the dipole–quadrupole and the TMI terms
from (8). Nevertheless, in the present paper these values were
calculated using the FDMNES code and possess a specific
physical meaning. The TMI contribution can be divided
into two parts, one corresponding to the displacements of the
resonant Zn atom and the other to the correlated movement of
Zn and surrounding oxygen atoms. This allows us to obtain
the correlation functions by fitting the measured diffraction
intensities.

Figure 8 shows the correlation functions 〈u2
x(Zn)〉 and

〈ux(O)ux(Zn)〉 corresponding to the best values VZnZn(T )

and VOZn(T ) obtained from fit to the 115 intensity fitting at
various temperatures. We can compare the correlation function
〈u2

x(Zn)〉 with the literature [35] and experimental results [34].
Naturally, the values of the correlation functions are less than
given in [34, 35], because the TMI mechanism involves mainly
the optical phonon vibrations and they are less sensitive to
the acoustic modes. We see that the correlation function
〈u2

x(Zn)〉 is in good agreement with the coth( E2l
2kT ) model which

corresponds to the low-energy phonon mode. This supports
our earlier model describing the temperature dependence of
the 115 reflection [24]. Nevertheless, the oxygen vibration
must clearly be taken into account. Between 200 and 400 K
the growth of the contribution from oxygen vibrations is not
monotonic. There is an interplay between the contributions
to the TMI part of the scattering factor corresponding to the
zinc and oxygen vibrations, allowing a good fit to the energy
spectrum in this temperature interval.
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Figure 6. Integrated intensity of the 115 reflection at various temperatures: experiment versus calculation. From top to bottom and from left
to right: 50, 100, 200, 300, 500, 600, 800 K.

From figures 3 and 6 we see that our calculations provide
a good description of the main features of the energy spectrum
and its temperature dependence, but finer details of the spectral
shape are not reproduced. The calculated curves look smoother
than the measured ones. There are several possible reasons for
this discrepancy, including: (1) neglect of the second neighbor
displacements, which contribute to the resonant scattering
tensor; (2) the application of the multiple scattering technique
and muffin-tin approximation for crystal potential, which are
more convenient to use. The FDM approach using full
potential can in principle improve the results, but the model
is very sophisticated and CPU-intensive; (3) the uncertainty in

the determination of the excited state parameters, like �(E).
In the FDMNES code, the excited state energy levels are
convoluted with an arctangent function. It is a reasonable
approximation, but it smoothes sharp features drastically, and
it is impossible to optimize, simultaneously, the general shape
and detailed features. The convolution parameters we used
were obtained from absorption spectra. It may be possible
to find better parameters to reproduce the fine features, but
it would not change significantly the conclusions relating to
the correlation functions. The fits we present here describe
satisfactorily the main features of the energy spectra of the
115 forbidden reflection and their temperature dependence,

6
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Figure 7. Thermal motion induced contribution to the 115 reflection
intensity growing with temperature and temperature independent
(dipole–quadrupole) term.

Figure 8. Correlation functions obtained from the 115 reflection
intensity fitting in comparison with the results of the paper [34] and
with the growth corresponding to the low-energy vibration mode.

allowing us to make conclusions about the TMI contribution to
the resonant atomic tensor and to extract correlation functions.

5. Conclusions

Resonant x-ray diffraction in ZnO was studied over a
wide range of temperatures. Owing to the change of the
atomic scattering tensor during thermal vibrations the energy
spectrum of the 115 forbidden reflection varies strongly with
temperature. The resulting spectral lineshape arises from
the complex interplay between several contributions to the
structure factor, one being thermally independent and others
thermally dependent. Theoretical calculations using the
FDMNES code allow us to conclude that the temperature-
independent term can be classified as dipole–quadrupole
while the thermal-dependent terms are provided by the
additional contributions to the resonant atomic factor induced
by displacements of Zn and its three nearest oxygen ions.

The fits of the experimental spectra permit the separation of
each of these contributions and therefore the determination of
the autocorrelation function 〈u2

x(Zn)〉 and correlation function
〈ux(O)ux(Zn)〉. The results are in good agreement with
the data known from the scientific literature. We have
therefore demonstrated that the temperature dependence of
forbidden Bragg reflections can give valuable information
about the optical phonon vibrations in crystals, and that the
phenomenological description of TMI has a sound physical
basis.
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