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We have developed a model for the resistive transition in a transition edge sensor (TES) based on

the model of a resistively and capacitively shunted junction, taking into account phase-slips of a

superconducting system across the barriers of the tilted washing board potential. We obtained

analytical expressions for the resistance of the TES, R(T, I), and its partial logarithmic derivatives

aI and bI as functions of temperature and current. We have shown that all the major parameters

describing the resistive state of the TES are determined by the dependence on temperature of the

Josephson critical current, rather than by intrinsic properties of the S-N transition. The complex

impedance of a pristine TES exhibits two-pole behaviour due to its own intrinsic reactance. VC 2011
American Institute of Physics. [doi:10.1063/1.3621829]

The transition edge sensor (TES) is a simple supercon-

ducting device exhibiting unique spectroscopic capabilities

for single photon detection over an energy range from near

infrared to hard X-rays.1 In spite of rapid technological pro-

gress, the theoretical limit of TES resolution has not yet been

achieved. One of the reasons is the absence of a detailed

physical understanding of the resistive state of the TES.

Because of its complexity, a credible microscopic model has

not yet been developed, and the current description of a TES

is based largely on a phenomenological approach.2 Within

this model, the TES is viewed as a variable resistor, charac-

terised by the extremely sharp dependence of its resistance

on temperature, T, through the S-N phase transition and a

smooth dependence on current, I. The phenomenological

theory of a TES3 takes the TES resistance R(T, I) and its par-

tial logarithmic derivatives with respect to temperature and

current aI ¼ @lnR=@lnTjI and bI ¼ @lnR=@lnIjT as known

functions. These functions are used to model the TES

response. In spite of spectacular progress in developing TES

technology, many important problems, especially excess

noise,2 remain unresolved, indicating that a more detailed

physical understanding of the resistive transition in TES is

needed.

It has recently been realised that in many superconduct-

ing devices currently being developed as sensitive detectors

of radiation, the essential physics must involve an under-

standing of TES weak link behaviour with a correct account

of the long range lateral proximity effect.4,5 Experiments

with Mo-Au transition edge sensors4 have revealed a strong,

long range lateral proximity effect even in the 290 lm square

samples. In addition, the critical temperature describing the

transition from superconducting to resistive state was found

to be a strong function of TES size and bias current. A model

based on Ginzburg-Landau (GL) theory was used in Ref. 4

to interpret the data. Long range proximity effects must also

play a significant role in nano- or hot electron bolometers6

even though in nanobolometers the coherence length may be

only a few tens of nanometers.

The long range proximity effect in a TES has been stud-

ied earlier at a microscopic level using the Usadel approach.5

This method facilitates calculation of the order parameter

profile in TES, its dependence on temperature and supercur-

rent, and also the critical Josephson current as a function of

temperature for an arbitrary length of TES and arbitrary

transparency of the interfaces between leads and TES. In a

typical TES, the critical temperature of the leads, TcL, con-

siderably exceeds the intrinsic critical temperature of the

TES film Tc. One of the results of such a modelling is that

due to the proximity effect, the order parameter remains fi-

nite throughout the resistive transition of TES, and supercon-

ductivity is not destroyed. It is, therefore, evident that the

resistive transition in a laterally proximised TES is not fully

determined by the properties of the S-N phase transition.

A microscopic theory of electrical transport in classical

weak links has been developed for tunnel7 and later for ScS

(c indicates constriction) junctions;8 an extensive review was

given by Likharev9 and also Golubov et al.10 Nonequili-

brium superconductivity effects were later modelled for sev-

eral specific examples of weak links.11,12 The most

significant assumption in the latter work was that the temper-

ature remained close to TcL. With this assumption, analytical

solutions were obtained for several specific cases, including

long links in which the length L far exceeded the coherence

length, n. However, the physics of transition edge sensors

cannot be described within these assumptions, because the

TES operate at temperatures which remain much lower than

the critical temperature of the superconducting leads. This
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makes a general microscopic solution extremely compli-

cated, and in this work, we do not consider the full micro-

scopic model of the resistive transition in TES. Instead, we

analyse the TES within a model of a resistively and capaci-

tively shunted junction (RCSJ) and its overdamped limit,

which has previously been used to describe many important

characteristics of weak links.9 Formal validation of this

model for such an extended system as TES is absent,

although for the limiting case of a short bridge it can be justi-

fied as following from the microscopic model, if nonequili-

brium superconductivity effects are neglected.11 In this

work, we take the RCSJ as the simplest model incorporating

weak link behaviour in order to analyse the resistive transi-

tion in a TES. We sacrifice such nonequilibrium effects as

branch imbalance generation and relaxation, Andreev reflec-

tions, and conversion from supercurrent to normal current in

favour of model simplicity.

The expression for R(T, I) in an overdamped junction

with thermal fluctuations can be obtained from the I-V char-

acteristics.13,14 We may write15

R � RðT; IÞ ¼ RN

(
1þ 1

x
Im

I1þicxðcÞ
IicxðcÞ

� �)
: (1)

Here, RN is the normal state resistance, c ¼ ð�hIcðT; LÞÞ=ð2eTÞ
is the ratio of the Josephson coupling to thermal energy,

x ¼ I=ðIcðT; LÞÞ, Ic(T, L) is the critical Josephson current, and

I1þicx(z) and Iicx(z) are the modified Bessel functions Im(z) of

the complex order, m, and real variable, z. Performing differ-

entiations, we obtain aI and bI,

aI ¼ �
c
x

dlnIc

dlnT

RN

R
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R

�
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I�2
icx ðcÞ �
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0

dzIicxðzÞI1þicxðzÞ
��
:

(3)

The entities, R, aI, and bI, are all functions of T and I.
With the transition temperature of the leads being typi-

cally an order of magnitude higher than the operating tem-

perature, modelling with the use of the GL theory can be

justified only for the case of a strong interfacial resistance,

leading to less than 1% electron transmission across the

interface. Even in this situation, the GL description will be

more reliable for a larger size TES, losing its applicability

closer to the leads/TES interface. To model the lateral prox-

imity effect without any limitations, we use the Usadel for-

malism and calculate the dependence of the critical

Josephson current on temperature numerically. We show the

results for the two extreme situations—strong lateral proxim-

ity effect (fully transparent lead/TES interface) and weak lat-

eral proximity effect (high interfacial resistance). Fig. 1

shows examples of the R(T, I), aI, and bI for a typical, later-

ally proximised TES.

The RCSJ model allows us to generalise the response of

a TES to an alternating current. If the description as an over-

damped junction is correct, then it possesses its own intrinsic

reactance. The latter arises because of regular phase slippage

by 2p with characteristic frequency s�1, where

s ¼ ð�h=2eÞ2=RNT is the average time a “particle” takes to

diffuse one period of a tilted washing board potential.13,14

The intrinsic impedance Z0(x, T, I) is written in terms of

Bessel functions,15

Z0ðT; I;xÞ
RN

¼ 1� c
2

I1þicxðcÞ
IicxðcÞðkþ ixsÞ þ

I1�icxðcÞ
I�icxðcÞðk� þ ixsÞ

� �
;

(4)

where the expression for the eigenvalue k is k ¼ ðcIicxðcÞ
I1þicxðcÞÞ=ð2

Ð c
0

dzIicxðzÞI1þicxðzÞÞ. We analyse the electric

equivalent circuit in which the variable resistor, representing

the TES, is replaced by an overdamped junction, shown in

Fig. 2(a), and solve the small signal equations16 for the sim-

plest case of a pristine TES, with no extra electrode struc-

ture, absorber, or membrane contributing to thermal

decoupling. We obtain

FIG. 1. (a) R(T,I) for a TES with transparent lead/TES interface; (c)

dependences of aI, bI, and R calculated at fixed current I¼ 0.3Ic0 on temper-

ature in the range, corresponding to 0.1 � R/RN � 0.9: TcL/Tc¼ 20, L/

nN¼ 25. Tc and nN are TES intrinsic critical temperature and coherence

length, respectively, and Ic0 : Ic(Tc); (b)-(d) as (a)-(c) but for low interface

transparency; (e) calculated critical current dependence on temperature:

upper curve—high and lower curve—low interface transparency.

FIG. 2. (a) Electrical equivalent circuit with the TES modelled as an over-

damped junction, Rs � R is the shunt resistor; (b) low current complex im-

pedance with (bottom curves of the pairs) and without (top curves) account

taken of the intrinsic TES reactance: 1—R/RN¼ 0.03, 2—R/RN¼ 0.1, 3—R/

RN¼ 0.5.
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ZTESðxÞ ¼
£0Rþ Z0ðxÞð1þ ixs0Þ
ð1� £0Þð1� ixseff Þ

¼ Z0
TESðxÞ þ

1

1� £0

ðZ0ðxÞ � Z0ð0ÞÞð1þ ixs0Þ
1� ixseff

:

(5)

Here, Z0
TESðxÞ ¼ ðRð1þbIþ £0Þð1þ ixsfallÞÞ=ðð1� £0Þ

ð1� ixseff ÞÞ is the standard expression for the complex im-

pedance of the TES without thermal decoupling, £0 is the loop

gain, s0 is the natural (without feedback) time constant,

seff ¼ s0= ð£0� 1Þ, and sfall ¼ s0=½1þ £0=ð1þbIÞ�. Fig. 2(b)

shows the calculated impedance at a constant TES current at

different temperatures, illustrating the effect of the second

higher frequency pole. The numbers are chosen for illustrative

purposes only and the curves sequence does not reflect any

experiment imposing specific constraints on TES temperature,

current, or bath temperature. It is seen that, as expected, the

contribution of intrinsic reactance (the difference between the

top and bottom curves of the pairs in Fig. 2) is greater for

lower values of the ratio R/RN, lessening with increasing of

the normal current. At R/RN¼ 0.1, the effect of including the

intrinsic reactance of the TES may become observable already

at xs’ 1. For RN¼ 20 mX and T¼ 100 mK, this falls into

frequency range f 	 50 kHz. However, the cusp, where

ImZTESðxÞ ¼ 0 (both inward and outward inflexions of the

complex impedance curve are possible for different TES pa-

rameters) can only be seen for xs 	 1 (typically xs
 1),

depending on the exact values of £0, s0, seff, and s. Thus, ob-

servation of the two pole behaviour and cusp in the frequency

range up to 1 MHz of a pristine TES without any thermal

decoupling would serve as direct evidence of the intrinsic re-

actance of the TES and would also support the RCSJ model of

its resistive state. This contribution can easily be separated

from any stray dangling heat capacity. Indeed, as seen from

Fig. 2, since the second pole contribution is of electronic ori-

gin, it changes rapidly across the narrow resistive transition

range. No other thermally decoupled subsystem would exhibit

this behaviour. Finally, we note that an observable effect of

the second pole at lower frequencies xs 	 1 occurs in the

relatively narrow region of (T,I) phase space, at small cur-

rents, for which calculations leading to results in Fig. 2(b)

were made. For large bias currents, the Josephson coupling

energy is large in comparison with kbT, so that the complex

impedance over a broad frequency range approaches the clas-

sical result, and the two-pole behaviour can only be detected

at high frequencies xs
 1.

In summary, we have shown that the RCSJ model can

provide a realistic description of the resistive state of a tran-

sition edge sensor. The model predicts the specific contribu-

tion to the complex impedance of a TES due to its intrinsic

reactance. Observation of this frequency dependence and a

quantitative analysis of dedicated experiments are important

for further validation of the RCSJ approach.
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