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Abstract—Influence of transverse effects on the propagation of light beams in gradient glass fiber and
on the pulsed mode of the second harmonic generation is investigated. Within the approaches under
consideration the equations for the pulse or beam field envelopes are reduced to a system of hydrodynamic-
type equations for amplitudes and eikonals. These equations are used to describe the vortex and non-vortex
beam channeling modes and the propagation of light bullets.
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1. INTRODUCTION

The notion of the soliton has penetrated into al-
most all fields of physics, being probably most widely
used in optics. There are spatial and temporal optical
solitons. Spatial solitons are optical beams almost
unlimited in the direction of their propagation and
limited in transverse directions. These solitons occur
when the self-focusing of the beam is compensated
for by its diffraction due to nonlinearity of the medium
[1]. Temporal solitons are optical pulses of finite du-
ration unlimited in transverse directions and limited
in the direction of propagation. Here the nonlinear
breaking of the pulse is compensated for by its dis-
persion.

In its strict sense, the term soliton usually refers to
a solitary wave capable of elastically interacting with
others like it. By solitons are often meant (especially
in nonlinear optics) simply solitary waves that are not
necessarily required to interact elastically with one
another. It is in this generalized sense that we will
treat the soliton in this work.

Recently the emphasis in the investigations of
nonlinear waves has been more and more shifted to
three-dimensional soliton-like formations that can
be treated as a symbiosis of spatial and temporal
solitons, which requires consideration of nonlinearity
and dispersion of the medium and diffraction of the
signal. Compensation for nonlinear self-compression
in all directions by dispersion and diffraction leads to
formation of light bullets, that is, stable light energy
bunches localized in all directions [2]. Exact math-
ematical methods are rarely successful in describing
these objects. Therefore, hopes are pinned on approx-
imate approaches.
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An approach to description of self-focusing of op-
tical beams (spatial solitons) is proposed in [1]. The
investigation within this approach is reduced to solv-
ing equations of ideal fluid dynamics. The roles of
the fluid density and the velocity potential are played
by the beam intensity and eikonal respectively. In [3]
this approach is generalized to temporal solitons. It is
based on the averaged Lagrangian (AL) method [4],
which is used to derive hydrodynamic-type equations
for soliton parameters.

In this work we investigate dynamics of axially
symmetrical and vortex light beams in gradient glass
fiber and of spatial-temporal solitons in the second
harmonic generation mode. In both cases the investi-
gation will be reduced to the analysis of hydrodynamic
equations.

2. LIGHT BEAMS
IN GRADIENT GLASS FIBER

Let a long monochromatic light beam with a fre-
quency ω propagate along the z axis in gradient glass
fiber whose refractive index is transversely inhomo-
geneous. Let, in addition, the glass fiber have cubic
nonlinearity characterized by the third-order nonlin-
ear susceptibility χ(3). Then the envelope ψ of the
electric field of the beam obeys the equation

i
∂ψ

∂z
− q(r)ψ − α|ψ|2ψ =

c

2n0ω
Δ⊥ψ. (1)

Here the second left-hand side term allows for the
dependence of the linear susceptibility χ = χ0 + χ̃(r)
on the transverse coordinates given by the vec-
tor r; χ0 is the constant component of the sus-
ceptibility, and χ̃(r) has a property χ̃(r) = 0 on the
assumption that the origin of the transverse co-
ordinates is at the center of the glass fiber cross
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section. Then q(r) = 2πωχ̃(r)/cn0, α = 6πχ3ω/cn0,
n0 =

√
1 + 4πχ0 is the homogeneous part of the re-

fractive index, χ3 is the nonlinear susceptibility of the
third order, c is the speed of light in the vacuum, and
Δ⊥ is the transverse Laplacian.

To continue, we put

ψ =
√

ρ exp
(
−i

n0ω

c
Φ

)
, (2)

where ρ and Φ are the real functions of the coordi-
nates.

Substituting (2) into (1) and separating the real
part from the imaginary part, we arrive at the system

∂ρ

∂z
+ ∇⊥(ρ∇⊥Φ) = 0, (3)

∂Φ
∂z

+
(∇⊥Φ)2

2
− c

n0ω
q(r) + f(ρ)

= γ

(
c

n0ω

)2 (Δ⊥
√

ρ)
√

ρ
, (4)

where ∇⊥ is the transverse gradient, γ = 1/2, and

f(ρ) = − cα

n0ω
ρ. (5)

When the right-hand side is absent in (4), the
system (3)−(4) is formally similar to the system of
equations of two-dimensional ideal fluid dynamics [5].
In this case, (3) is the continuity equation and (4) is
the Cauchy integral. The longitudinal z axis is the
time and the eikonal Φ is the velocity potential; it is
evident form (2) that the “fluid density” ρ = |ψ|2 is
positive and proportional to the light beam intensity.

The third left-hand side term in (4), which arises
from the inhomogeneity of the linear susceptibility of
the glass fiber, plays the role of the potential energy
of the external field in which the fluid flows. Let q(r)
(and χ(r) as well) have a local minimum. Then the
potential energy density u(r) has a maximum here.
Obviously, the imaginary fluid will spread beyond this
region of unstable equilibrium, which will result in
decreasing ρ. Consequently, the light beam energy
will decrease here. In the case of the local q(r) maxi-
mum, by similar reasoning we come to the conclusion
that beam energy will accumulate in this region. The
analyzed effect of the third left-hand side term in (4)
corresponds to the linear refraction of the light beam
and is strictly consistent with the Fermat principle.

The fourth term in this equation is related to the
internal fluid pressure p and has the form

∫
dp/ρ [5].

Equating this expression and the fourth left-hand side
term in (4) and differentiating with respect to ρ with
allowance for (5), we obtain the flow equation

dp

dρ
= − cα

n0ω
ρ. (6)

It is evident that dp/dρ> 0 (normal fluid) if α < 0,
which is equivalent to χ3 < 0. In this case, if the den-
sity ρ increases in any local area, the pressure in this
area increases as well. As a result, this inhomogeneity
disappears because the fluid tends to leave this area
for regions with lower pressure. Returning to our
optical beam, we state that it undergoes defocusing.
Now let α∼χ3 > 0. Then, as is evident from (6),
dp/dρ< 0 (Chaplygin gas [6]), which corresponds to
self-focusing of the beam.

The right-hand side in (4) is beyond the optical-
hydrodynamic analogy and describes the effect of
diffraction on the beam propagation. Consequently,
the neglect of the right-hand side in (4) corresponds
to the geometrical optics approximation.

After this qualitative consideration we proceed to
analyze some of the explicit solutions to the system
(3)−(4). The following expressions obey equation (3):

ρ = ρ0
R2

0

R2(z)
F

[
r

R(z)

]
,

(7)

Φ = f1(z) +
r2

2
R′(z)
R(z)

+
c

n0ω
mϕ.

Here r is the radial component of the cylindrical co-
ordinate system, which has a sense of the distance
from the focal z axis to the observation point, ϕ is
the azimuthal angle, m is an integer, R is the z-
dependent characteristic transverse radius (aperture)
of the beam, R0 and ρ0 are, respectively, the radius
and the amplitude squared of the beam at the entrance
to the medium at z = 0, and F is the function deter-
mined after substitution of (7) into (4).

It is evident from (2) and the second expression
(7) that the condition of periodicity of ψ in ϕ is
automatically satisfied. Note that the last term in
(7) with m = 1 arises in hydrodynamics in lift force
calculations [5].

We begin with the axially symmetrical case corre-
sponding to m = 0 [1, 7, 8]. Considering that

χ̃ = ηr2/l2, (8)

where l is the characteristic inhomogeneity scale of
the linear susceptibility and η =±1, and substituting
(7) into (4), we obtain

f ′
1 +

r2

2
R′′

R
− 2π

n2
0

η
r2

l2

− cα

n0ω
ρ0

R2
0

R2
F =

(
c

n0ω

)2 (Δ⊥
√

F )
2
√

F
. (9)

Obviously, η = +1 corresponds to the defocusing lin-
ear refraction and η =−1 to the focusing one.

First, we solve the problem within the geometrical
optics approximation, setting the right-hand side in
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(9) equal to zero. Then it is convenient to choose the
function F (r/R) in the form

F = 1 − r2

R2
, 0 � r � R. (10)

This expression corresponds to the beam with the in-
tensity monotonically decreasing from the maximum
(at the center) to zero (at r = R).

Substituting (10) into (9) and separately setting
the coefficients of r to the power 0 and 2 equal to zero
while ignoring the right-hand side, we obtain

f ′
1 =

b

R2
, (11)

R′′ − μR +
a

R3
= 0, (12)

where a = (2cα/n0ω)ρ0R
2
0, μ = (4π/n2

0l
2)η, and

b = a/2.
Equation (12) is an analogue of Newton’s second

law for a particle of unit mass with the coordinate R,
where z plays the role of time. To this motion there
corresponds the “potential energy” of the form

U = −μ

2
R2 − a

2R2
. (13)

Obviously, U(R) has a stable minimum only for
μ < 0 and a < 0, which corresponds to the focusing
linear refraction and defocusing self-refraction.

The ratio R′/R has the sense of the curvature of
the light beam wave fronts. Assuming that wave
fronts are plane at the entrance to the medium, we
have R′(0) = 0. Then equation (12) for μ < 0 and
a < 0 has a spatially oscillating solution

R =
[
R2

0 + (R2
1 + R2

0) sin
(√

−μz
)]1/2

, (14)

where R2
1 = a/μR2

0.
Thus, the beam aperture experiences oscillations,

taking on the values between R0 and R1. The phase
velocity and the wave front curvature have an oscillat-
ing character (see (2), (7), (11), (19)). The period of
the oscillations depends on the inhomogeneity of the
glass fiber and is

√
πn0l.

It is quite clear that in the case of the defocusing
linear refraction and focusing self-refraction the beam
undergoes self-focusing at 3χ3ρ0 > (R0/l)2. Other-
wise, unlimited defocusing occurs.

To consider diffraction, note that expression (10)
corresponds to the beam with sharp transverse bound-
aries at r = R. Diffraction should favor smearing of
the boundaries. Based on (10), we now choose F in
the form

F = exp
(
− r2

R2

)
. (15)

Substituting (15) into (9), we obtain

f ′
1 +

r2

2
R′′

R
− 2π

n2
0

η
r2

l2
− cα

nω
ρ0

R2
0

R2
exp

(
− r2

R2

)
=

(
c

n0ω

)2( r2

2R4
− 1

R2

)
. (16)

Now we use the near-axis approximation [1, 9],
examining regions adjacent to the center of the beam,
where the intensity is at maximum and r2/R2 � 1.
Putting exp(−r2/R2)≈ 1−r2/R2 on the left-hand
side of (16) and equating the coefficients of r to the
power 0 and 2 on both sides, we arrive at equations
(11) and (12) where

a =
2cα

n0ω
ρ0R

2
0 −

(
c

n0ω

)2

,

b =
cα

n0ω
ρ0R

2
0 −

(
c

n0ω

)2

,

and the expression for μ remains unchanged.
It is seen that a can be negative in the case of

focusing nonlinearity (α > 0) as well. This requires
fulfillment of the condition

ρ0R
2
0 <

λ2

48π3χ3
, (17)

where λ = 2πc/ω is the wavelength of the optical
beam.

Inequality (17) corresponds to the known condi-
tion for the beam threshold power, the excess of which
leads to the self-focusing of the beam [1].

Now we turn to considering vortex solutions for
the light beam when m �= 0 in (12), confining our-
selves to the geometrical optics approximation. Sub-
stituting (7) into (4), we obtain

f ′
1 +

r2

2
R′′

R
+

(
c

n0ω

)2 m2

2r2

− 2π

n2
0

η
r2

l2
− cα

n0ω
ρ0

R2
0

R2
F = 0. (18)

To satisfy this equality, F should be taken in the
form

F = 1 − g
r2

R2
− h

R2

r2
, (19)

where g and h are constants.
Substituting (19) into (18), we find that

h = − cm2

2n0ωαρ0R2
0

, (20)

and f1 and F obey equations (11) and (12), respec-
tively, with the coefficient values given immediately
behind them.
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The function F defined in accordance with (19)
has two real roots r2 > r1 only if g and h are positive,

r1,2 = R

[
1
2g

(
1 ∓

√
1 − 4gh

)]1/2

. (21)

Now the range of definition of F (and consequently
ρ as well) is r1 � r � r2, where it has the maximum
value Fmax = 1−2

√
gh at r = rm = (h/g)1/4R.

Since h> 0, then α∼χ3 < 0, as follows from (20).
Thus, the nonlinearity must be defocusing to form a
localized vortex in the gradient fiber glass. At the
same time, it follows from (21) that

4gh < 1. (22)

The periodic dependence R(z) is described by (15).
It is evident from (21) that the interval r2 − r1 defin-
ing the vortex existence region becomes narrower as
R decreases. Since Fmax remains unchanged, the
amplitude of the vortex intensity increases according
to the first expression in (7). When R increases, the
reverse situation occurs.

3. SPATIAL-TEMPORAL SOLITONS

Now we go over from continuous beams (spatial
solitons) to solitary pulses in nonlinear dispersion
media, spatial-temporal solitons, considering their
dynamics with allowance for transverse effects. To
this end, we use the AL method [3, 4, 10], which
we mentioned in the Introduction. Within this ap-
proach, an exact one-dimensional soliton solution is
first found for the wave equation under consideration.
Next, to allow for the effect of the transverse spatial
measurements, an assumption is made that some of
the parameters in these solutions depend on coordi-
nates. The result is the so-called trial solutions. They
are substituted into the Lagrangian that corresponds
to the initial wave equation involving derivatives with
respect to transverse coordinates. Then the resulting
expression is averaged over time. Finally, the AL
involving dependence on the variable parameters is
obtained. Applying this averaged Lagrangian to the
Euler−Lagrange equations for the variable parame-
ters, we arrive at a system like (3) and (4).

Let us use the soliton mode of the second har-
monic generation to demonstrate this procedure. If
the phase and group matching conditions are fulfilled,
the system of equations for the envelopes of the first
ψ1 and second ψ2 harmonics has the form [11]

i
∂ψ1

∂z
+

k
(1)
2

2
∂2ψ1

∂τ2
− d1ψ

∗
1ψ2 =

c

2n0ω
Δ⊥ψ1, (23)

i
∂ψ2

∂z
+

k
(2)
2

2
∂2ψ2

∂τ2
− d2ψ

2
1 =

c

4n0ω
Δ⊥ψ2. (24)

Here τ = t − z/vg is the local time; vg and n0 are
the linear group velocity and the refractive index, re-
spectively, identical for both harmonics; d1 and d2 are
the quadratic nonlinearity coefficients proportional to
the second-order nonlinear susceptibility χ(2) for both

harmonics; and k
(1)
2 and k

(2)
2 are the coefficients of

the group velocity dispersion (GVD) at the first and
second harmonics, respectively.

If GVD coefficients are connected by the relation

k
(2)
2 = 2k

(1)
2 , (25)

system (23)−(24) has temporal (Δ⊥ = 0) soliton so-
lutions of the form [12]

ψ1 = ±3k2

4τ2
p

√
2

d1d2
exp

(
i
k2z

2τ2
p

)
sech2

(
τ

2τp

)
, (26)

ψ2 = − 3k2

4τ2
p d1

exp

(
i
k2z

τ2
p

)
sech2

(
τ

2τp

)
. (27)

From here on k2 ≡ k
(1)
2 and τp is the duration of the

pulses of both harmonics.
Now let us consider the transverse dynamics de-

termined by the right-hand sides in (23) and (24).
Performing the scaling transformation

ψ1 =
√

d1

2d2
Φ1, ψ2 = Φ2, (28)

we write the density of the Lagrangian corresponding
to system (23) and (24) as

L = L1 + L2 + Lint, (29)

where

L1 =
i

2

(
Φ∗

1

∂Φ1

∂z
− Φ1

∂Φ∗
1

∂z

)
− k2

2

∣∣∣∣∂Φ1

∂τ

∣∣∣∣2+
c

2n0ω
|∇⊥Φ1|2, (30)

L2 =
i

2

(
Φ∗

2

∂Φ2

∂z
− Φ2

∂Φ∗
2

∂z

)
− k2

∣∣∣∣∂Φ2

∂τ

∣∣∣∣2+
c

4n0ω
|∇⊥Φ2|2, (31)

Lint = −d1

2
(Φ∗2

1 Φ2 + Φ2
1Φ

∗
2). (32)

In agreement with (26)−(28), we choose the trial
solutions in the form

Φ1 = ±6k2

d1
ρ2/3 exp

(
−i

n0ω

c
Φ

)
sech2(ρ1/3τ), (33)

Φ2 = −3k2

d1
ρ2/3 exp

(
−2i

n0ω

c
Φ

)
sech2(ρ1/3τ). (34)

Here ρ and Φ are unknown functions of coordinates.
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On substituting (33) and (34) in (29)−(32) and
integrating over τ , we have

+∞∫
−∞

L dt = 216
(

k2

γ

)2

Λ,

where the averaged Lagrangian is

Λ =
ρ

3

[
∂Φ
∂z

+
(∇⊥Φ)2

2

]
+

2ck2

5n0ω
ρ5/3

+
(

1 +
π2

30

)(
c

n0ω

)2 (∇⊥ρ)2

36ρ
. (35)

Writing the corresponding Euler−Lagrange equa-
tions for Φ and ρ, we again arrive at the hydrodynamic-
type system like (3), (4), where q(r) = 0, γ = (1 +
π2/30)/3, and

f(ρ) =
2c

n0ω
k2ρ

2/3. (36)

Thus, on obtaining similar systems of the hy-
drodynamic type in dealing with spatial and spatial-
temporal solitons, we can investigate them on a uni-
fied basis. For example, the qualitative analysis (like
the one performed in the previous section) shows that
soliton (33) and (34) propagates in the self-focusing
mode when k2 < 0 and in the defocusing mode when
k2 > 0.

Let us find localized axially symmetrical non-
vortex solutions to the system of (3), (4), (36), putting
m = 0 in (7). It is clear that within the geometrical
optics approximation we have F = (1 − r2/R2)3/2

here. Then, using the right-hand side in (4) to allow
for diffraction, we set F = exp(−3r2/2R2) by analogy
with the previous section. It is evident from (7),
(33), and (34) that this approximation corresponds
to that the envelopes of both harmonics decrease with
increasing r as∼ exp(−r2/R2). As a result, we arrive
at the equations

f ′ = −2ck2

n0ω
ρ

2/3
0

R
4/3
0

R4/3
− 3γ

(
c

n0ω

)2 1
R2

, (37)

R′′ = −4ck2

n0ω
ρ

2/3
0

R
4/3
0

R7/3
+

9
2
γ

(
c

n0ω

)2 1
R3

. (38)

To equation (38) there corresponds the “potential
energy” of the form

U =
3ck2

n0ω
ρ

2/3
0

R
4/3
0

R4/3
+

9
4
γ

(
c

n0ω

)2 1
R2

. (39)

Hence it follows that U(R) has a minimum only if
k2 < 0. As is pointed out above, this corresponds to
the self-focusing mode at the eikonal stage. Under

particular conditions, diffraction can further stop this
process and lead to formation of a two-component
light bullet. Let us determine these conditions. To the
minimum in U(R) there corresponds the bullet radius

Rm = 0.295
(

c

n0ω|k2|

)3/2 τ3
0

R2
0

, (40)

where τ0 = ρ
−1/3
0 is the duration of the bullet at its

transverse center.
Thus, while propagating, the bullet pulses in such

a way that its transverse size varies relative to Rm.
Its amplitude, duration, and phase velocity also vary.
Its wave fronts periodically bend. Putting Rm = R0 in
(40), we obtain

R0 = 0.706
√

c

n0ω|k2|
τ0. (41)

No pulsing occurs, and the transverse size of the
bullet is proportional to its duration.

If U > 0, the soliton irreversibly expands. Con-
sequently, the condition U < 0 must be fulfilled to
ensure stability of the bullet. Then, setting R = R0 in
(39), we have

R0 > 0.576
√

c

n0ω|k2|
τ0. (42)

Substituting (42) into (42), we obtain the upper
estimate of the equilibrium radius

Rm < 1.06
√

c

n0ω|k2|
τ0. (43)

Apart from the phase and group matching condi-
tions, equality (25) is important for correctness of the
results obtained in this section. All these conditions
can hardly be strictly fulfilled at the same time, but
it can be done approximately if the frequencies ω
and 2ω are below the characteristic frequencies of
resonant absorption, which is true, for example, for
the terahertz range. In this case the wave number
k≈n0ω/c + sω3, where s is a constant and the sec-
ond term is small as compared with the first one.
Then the phase and group velocities of both har-
monics can be approximately taken to be c/n0. At
the same time, k2 ≡ ∂2k/∂ω2 = 6sω and (25) hold
automatically. However, in an equilibrium medium
featuring only time dispersion we have s> 0. Con-
sequently, k2 > 0, while formation of the above bullets
requires that k2 < 0. In a mcirodispersed (granulated)
medium, where space dispersion is of importance, s
can become negative under particular conditions [13],
which results in that k2 < 0 and (25) is simultane-
ously fulfilled. Then formation of the above bullets
becomes possible.
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Note that light bullets in quadratically nonlinear
media were earlier predicted using, among others, the
variational approach (see [14] and references therein).
However, this work is the first to reduce the investiga-
tion to hydrodynamic-type equations (3) and (4) and
seek their solutions in the form of (7).

4. CONCLUSIONS

Summing up, we note that the AL method leads
to equations of the hydrodynamic type for solitons of
a large number of equations [10, 15]. The correspond-
ing equations differ by functions f(ρ) and right-hand
sides of Cauchy integral (4).

It is worth mentioning that the AL method is valid
if the temporal soliton is formed before the transverse
dynamics effects (self-focusing, defocusing, etc.)
come into play. The nonlinear refraction, which
is present in the geometrical optics approximation,
manifests itself earlier than the wave properties of
the soliton that correspond to diffraction. If we
introduce the lengths of dispersion ld, refraction
lr, and diffraction lD, all that is said above will be
written as ld � lr � lD. It turns out that to meet
this condition is not so difficult if we consider the
automatically arising equality lr =

√
ldlD [7].

Thus, the above approach stemming from the the-
ory of nonlinear light beams [2] gives a rather full
and qualitatively correct description of the dynamics
of spatial-temporal solitons.
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