2. ГИДРОЛОГИЧЕСКИЙ РЕЖИМ И ЭКСТРЕМАЛЬНЫЕ ГИДРОЛОГИЧЕСКИЕ СИТУАЦИИ В УСТЬЕВЫХ ОБЛАСТЯХ АРКТИЧЕСКОЙ ЗОНЫ HYDROLOGICAL REGIME AND EXTREME HYDROLOGICAL SITUATIONS IN THE ARCTIC

Анализ возникновения экстремальных гидрологических событий на реках Российской Арктики Analysis of the appearance of the extreme hydrological events in the Arctic

Киреева М.Б., Фролова Н.Л., Пожидаева Д.С. (Kireeva M.B., Frolova N.L., Pozhidaeva D.S.)

Путем обработки многолетних временных рядов среднемесячных расходов воды для замыкающих створов рек российской Арктики были рассчитаны параметры экстремальных гидрологических явлений, определяемых по характеристикам фрагментов гидрографа стока за пределами заданных пороговых значений расходов воды (10% и 90% обеспеченностей). Выявлены тенденции многолетних изменений параметров экстремальных гидрологических явлений в бассейнах арктических рек в течение последних десятилетий.

Abstract

Using long term time series of monthly average water discharges for outlet gauging hydrological stations of the rivers of the Russian Arctic regions we calculate parameters of the extreme hydrological phenomena as defined by characteristics of the fragments of the flow hydrograph of certain values of water discharges (10 % and 90 % occurrence). Tendencies of long-term changes of parameters of extreme hydrological phenomena in the basins of the Arctic rivers within the last decades are determined.

Экстремальные гидрологические ситуации, связанные как с высокой, так и с низкой водностью обуславливают риски и экономические потери. Подобные гидрологические события, чаще всего имеют довольно редкую повторяемость и обычно охватывают большие территории. Они приводят к экономическим ущербам сразу в нескольких отраслях хозяйства. Если на Европейской территории России исследованиям изменений экстремальности стока уделяется довольно большое внимание, то в слабозаселенных районах россий-

ской Арктики подобных обобщающих работ мало. Интересен разрез исследования с точки зрения влияния континентальности климата на диапазон вариаций стока и его экстремальные значения.

Для объективной оценки степени влияния того или иного гидрологического события на экономику и хозяйство в мировой практике часто используются интегральные критерии [Kireeva et all., 2015; Фролова и др., 2015]. Чаще всего они основаны на выборе определенных «пороговых» значений характеристики, с которыми сравниваются наблюденные величины. По разнице этих значений определяется мера влияния события на жизнь людей, оценивается частота возникновения подобных ситуаций, масштаб явления. При этом чаще всего учитывается не только превышение наблюденных значений над пороговыми, но и длительность этого превышения. По результату расчетов определяется общий дефицит воды: в случае с низкой водностью - объем стока под пороговым значением, а в случае с экстремально высокими значениями, наоборот, - объем превышения над пороговым значением. Далее этот объем соотносится с продолжительностью явления, характеризуя некий интегральный показатель «суровости» события.

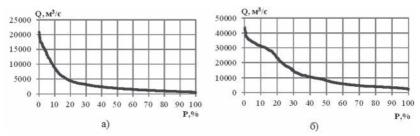
В качестве пороговых значений чаще всего используются значения расходов воды заданной повторяемости. Подобная схема оценки широко применяется в мировой гидрологической практике при анализе характеристик маловодного периода. В данной работе было принято решение использовать расходы воды повторяемости один раз в десять лет, что соответствует 10% и 90% обеспеченности соответственно. Для проведения анализа в российской Арктике было выбрано 34 гидрологических створа с наиболее продолжительными рядами наблюдений, охватывающими современный период. Среди таких постов рассматривались и крупнейшие реки, с площадями водосбора более 100 тыс. км², а также малые и средние реки. Это позволило проанализировать не только особенности формирования экстремальных событий в больших регионах, но и оценить влияние масштабных эффектов. Также для отдельных бассейнов (Лена) были выбраны несколько последовательно расположенных постов, для того, чтобы проанализировать прохождение экстремальных событий на разных участках течения такой крупной реки.

Все используемые в анализе посты располагаются преимуще-

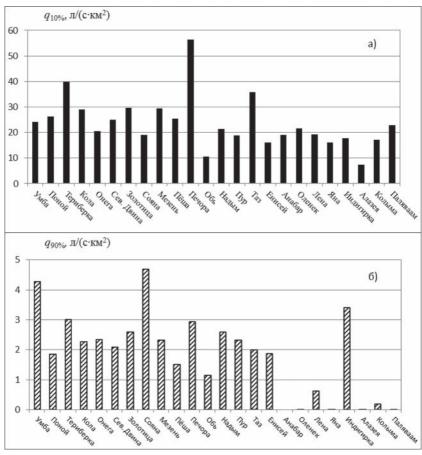
Таблица 1. Гидрологические посты, используемые в анализе

Река	Створ	Площадь бассейна, F, км²	Период	N, число лет
Умба	пор. Паялка	6470	1930–2006	77
Поной	с. Каневка	10200	1933–1992	60
Териберка	пос. Териберка с 1984 г. Нижнетери- беркская ГЭС	2020	1933–1994	62
Кола	1429-й км Октябрь- ской ж.д.	3780	1928–2004	77
Онега	д. Порог	55700	1943–2004	62
Сев. Двина	с. Усть-Пинега	348000	1881–2012	132
Золотица	д. Золотица	1840	1956–2012	57
Сояна	д. Сояна	5570	1966–2012	47
Мезень	д. Малонисогорская	56400	1920–2012	93
Пёша	д. Волоковая	2780	1965–2012	48
Печора	с. Усть-Цильма	248000	1916–2012	97
Обь	г. Салехард	2950000	1930–2012	83
Надым	г. Надым	48000	1955–1991	37
Пур	г. Уренгой	80400	1961–2012	52
Таз	г. Сидоровск	100000	1962–1996	35
Енисей	г. Игарка	2440000	1936–2012	77
Анабар	с. Саскылах	78800	1954–2012	59
Оленек	7,5 км	198000	1964–2012	49
Лена	с. Кюсюр	2430000	1934–2012	79
Яна	п.ст. Юбилейная	224000	1972–2007	36
Индигирка	ГМС Воронцово	305000	1936–1996	61
Алазея	г. Аргахтах	17700	1962–2010	49
Колыма	г. Среднеколымск	361000	1927–2012	86
Паляваам	0.8 км ниже устья р. Кооквын	6810	1971–1996	26

ственно в арктической зоне, но крупные бассейны естественно отражают полизональные условия формирования стока (табл. 1).


Анализ проводился на основе среднемесячных значений стока, что позволило охватить большую территорию и проследить синхронность развития того или иного события в разных бассейнах. Для выделения пороговых значений на основе всего имеющегося ряда наблюдений строилась абсолютная кривая продолжительности расходов воды (рис. 1).

С данных кривых снимались величины средних месячных расходов 10 и 90% обеспеченности (табл. 2). Для возможности сравнения полученные значения пороговых расходов были переведены в модульные величины.


Модули стока, соответствующие верхним и нижним пороговым значениям в целом меняются по территории в соответствии с континентальностью климата (рис. 2). Наибольшие величины порогового значения модуля стока $q_{0,1}$ от 20 до 30 л/(с·км²) наблюдаются на западе арктического региона, в районе Кольского полуострова, в бассейне Северной Двины и Онеги. Аномально высокими показателями обладает р. Печора (56 л/(с·км²)). В арктической зоне Западной и Восточной Сибири, показатель снижается до 15–20 л/(с·км²) (бассейн Оби, Надыма, Пура, Енисея и Лены). Повышенными пороговыми значениями $q_{0,1}$ отличается р. Таз (36 л/(с·км²)). На Дальнем Востоке (бассейны Яны, Индигирки, Колымы) характерны величины 14–18 л/(с·км²).

Аналогичным образом с запада на восток меняется и пороговое значение $q_{0,9}$. Однако, если на западе Арктики оно составляет около 1,5–2,5 л/(с·км²), то на Дальнем Востоке – стремится к нулю. Здесь, как известно, широко распространено явление перемерзания и промерзания, связанное с влиянием вечной мерзлоты на аномально низкую водность рек в зимний период. Аномально высокими значениями минимального «порога» отличаются малые реки с площадями водосбора менее 5000 км². Скорее всего это вызвано влиянием азональных факторов — карста, повышенного грунтового питания.

Ярко выраженной закономерности изменения числа случаев и суммарной продолжительности превышений и дефицитов выделить нельзя. Тем не менее, в целом для арктического региона суммарная продолжительность превышений пороговых значений изменяется от 65 до 25 месяцев за период наблюдений (рис. 3). На западе региона эта величина выше в среднем в 1,5 раза, чем на востоке.

Рис. 1. Кривые продолжительности месячных расходов воды для р. С. Двина — Усть-Пинега (а) и р. Обь — г. Салехард (б)

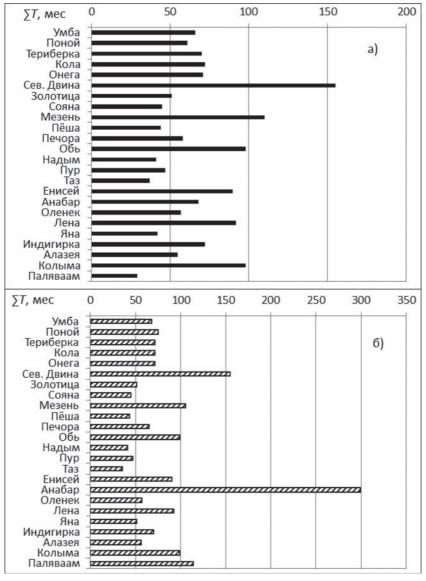
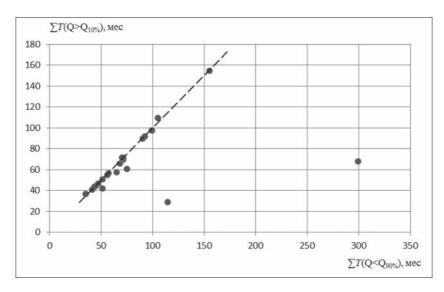

Рис. 2. Изменения порогового значения $q_{10\%}$ (a) и $q_{90\%}$ (б) с запада на восток

Таблица 2. Сводные характеристики превышения пороговых значений

				Q > Q _{10%}	10%					Q < Q 90%	%06		
Река	Створ	Q _{10%} , Л/ (C·KM ²)	\sum_{KM^3}	ΔV_{ep}^{cp}	∑Т, мес.	Т _{ср} ,	Sev, KM ³ / Mec	Q _{90%} , 11/ (C·KM ²)	\sum_{KM^3}	ΔV_{ep} , κ_{M}	∑Т, мес	т ср, мес	Sev, KM ³ /
Умба	пор. Паялка	24,1	6,18	0,105	99	1,1	0,059	4,3	0,827	0,014	89	1,2	0,005
Поной	с. Каневка	26,4	19,32	0,372	19	1,2	0,299	1,9	0,610	0,012	75	1,4	0,005
Териберка	пос. Териберка с 1984 г. ижнетери- беркская ГЭС	39,8	10,6	0,168	70	1,1	0,137	3,0	0,257	0,004	71	1,1	0,002
Кола	1429-й км Октябрьской ж.д.	29,1	12,2	0,201	72	1,2	0,163	2,3	0,307	0,005	71	1,2	0,002
Онега	д. Порог	20,5	140	2,25	71	1,2	1,90	2,4	3,00	0,048	71	1,1	0,019
Северная Двина	с. Усть-Пинега	25,1	1940	14,7	155	1,2	12,6	2,1	50,0	0,379	155	1,2	0,143
Золотица	д. Золотица	29,7	5,58	0,116	51	1,1	0,100	2,6	0,049	0,001	51	1,1	0,000
Сояна	д. Сояна	19,0	3,67	0,094	45	1,2	0,076	4,7	0,396	0,010	45	1,2	0,003
Мезень	д. Малонисо- горская	29,4	318	3,58	110	1,2	2,93	2,3	4,36	0,045	105	1,1	0,019
Пёша	д. Волоковая	25,4	9,30	0,232	44	1,1	0,170	1,5	0,078	0,005	43	1,1	0,001
Печора	с. Усть-Цильма	56,5	682	10,8	58	6,0	10,0	2,9	23,4	0,371	65	1,0	0,188
Обь	г. Салехард	10,5	876	10,5	86	1,2	5,31	1,1	102	1,24	66	1,2	0,495


Продолжение таблицы 2.

				$Q > Q_{10\%}$	10%					0 < 0	%06		
Река	Створ	Q _{10%} , Л/ (C·KM ²)	\sum_{KM^3}	$\Delta V_{ m cp},$ km	∑Т, мес.	T _{cp} ,	Sev, Km³/ Mec	$Q_{90\%}, \pi/$ (c·km ²)	\sum_{KM^3}	AV _{cp} ,	∑Т, мес	т ср, мес	Sev, KM ³ / Mec
Надым	г. Надым	21,5	87,3	2,36	41	1,1	2,07	2,6	1,68	0,045	41	1,1	0,015
Пур	г. Уренгой	18,9	177	3,85	47	1,0	3,37	2,3	3,25	0,071	47	1,0	0,023
Ta3	г. Сидоровск	35,8	84,1	2,40	37	1,1	1,98	2,0	2,20	0,063	35	1,0	0,026
Енисей	г. Игарка	16,1	8500	112	90	1,2	103	1,9	116	1,53	06	1,2	0,496
Анабар	с. Саскылах	19,2	279	4,73	89	1,2	4,21	0,0	0,000	0,000	299	5,1	0,000
Оленек	7,5 km	21,5	493	10,0	57	1,2	8,91	0,0	0,098	0,002	57	1,2	0,001
Лена	с. Кюсюр	19,4	5540	70,2	92	1,2	60,5	9,0	81,9	1,04	92	1,2	0,456
Яна	п.ст. Юбилейная	16,2	156	4,34	42	1,2	2,64	0,0	0,001	0,000	51	1,4	0,000
Индигирка	ГМС Воронцово	17,9	246	4,04	72	1,2	2,12	3,4	0,550	0,009	70	1,1	0,005
Алазея	г. Аргахтах	7,5	4,60	0,094	55	1,1	0,036	0,0	0,044	0,001	99	1,1	0,000
Колыма	г. Среднеколымск	17,2	903	10,5	86	1,1	7,33	0,2	3,02	0,035	66	1,2	0,015
Паляваам	0.8 км ниже устья р. Кооквын	22,9	3,88	0,149	29	1,1	0,101	0,0	0,003	0,000	114	4,4	0,000

Рис. 3. Изменения суммарной продолжительности $\sum T$ превышений (а) и дефицитов (б) с запада на восток

Аномально большое количество месяцев с превышением пороговых значений наблюдается в замыкающих створах крупных рек:

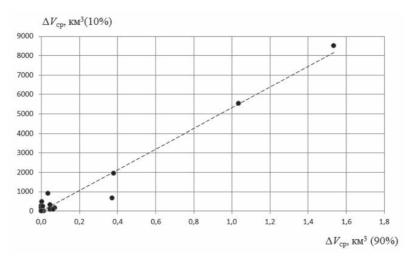


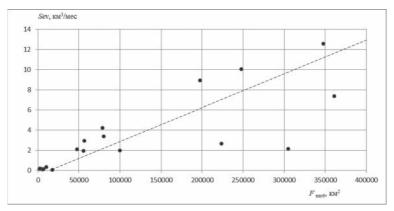
Рис. 4. Связь суммарной продолжительности периодов экстремально низкой и экстремально высокой водности

Северная Двина, Мезень, Обь, Енисей, Лена и Колыма. Именно здесь возможно формирование продолжительных экстремальных гидрологических условий. Так, например, в бассейне Лены в последние годы наблюдается маловодный период, возникают сложности с судоходством. В районе Салехарда в этом году наблюдалось аномально высокое половодье, вызванное дружной весной и достаточно большими запасами воды в снежном покрове. Аномально большое количество месяцев с дефицитом воды характерно для гидрологического поста в низовьях Анабара. Это вызвано влиянием вечной мерзлоты, проявляющемся в наличии периодов перемерзания и промерзания.

Интересным фактом является то, что количество экстремально маловодных и экстремально многоводных месяцев в большинстве случаев связано между собой (рис. 4): чем больше на реке наблюдается экстремально низких месячных расходов, тем больше на ней наблюдается и экстремально высоких расходов. Исключения составляют реки Анабар и Паляваам (небольшая река Кольского полуострова).

Кроме этого, для каждой реки был подсчитан суммарный объем превышения верхнего $\sum \! \Delta V_{10\%}$ и нижнего $\sum \! \Delta V_{90\%}$ порогового значения. Связи числа экстремальных событий с объемом дефицита или

Рис. 5. Связь среднего объема дефицита и превышения порогового значения


избытка не наблюдается. Между тем объем дефицитов четко связан с объемом превышений пороговых значений (рис. 5), коэффициент корреляции составляет более 0,8.

Таким образом, каждая река, обладая своими особенностями водного режима, имеет некую общую характеристику «экстремальности», характеризующую как количество маловодий, так и количество многоводий. Чем большей «экстремальностью» обладает водный режим реки, тем чаще на ней формируются как аномально низкие, так и аномально высокие периоды водности. В мировой практике в подобных оценках часто используется так называемый показатель «суровости» (Sev). Он представляет собой отношение дефицита или избытка воды к продолжительности этого явления

$$Sev_{i} = \frac{\Delta V_{i}}{T}$$

где Sev_i — показатель суровости, ΔV — объем дефицита или избытка, км³, T — продолжительность аномально низких или высоких значений водности, сут.

По полученным данным были рассчитаны значения показателя суровости для условий избытка и дефицита воды. При экстремально высоких значениях расходов воды суровость для исследуемых рек ме-

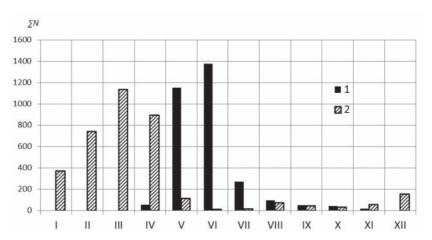


Рис. 6. Зависимость «суровости» явления при превышении порогового значения $Q_{10\%}$ от площади водосбора (для рек с F < 600 тыс. км²)

няется от 10–12 в бассейне Индигирки, Колымы, и Северной Двины до менее 0,1 в бассейнах малых рек. С увеличением площади водосбора «суровость» довольно быстро растет (рис. 6). Интересно, что для арктического региона суровость при экстремально низких значениях расходов воды изменяется очень мало в пределах от 0,1 до 0,2. Из-за влияния вечной мерзлоты связь с площадью водосбора нарушается.

Сезонное распределение превышений отражает особенности водного режима рек арктической зоны. Наибольшее количество превышений попадает на май и июнь (рис. 7). Дефицитные периоды чаще всего наблюдаются в феврале – марте, перед началом весеннелетнего половодья.

Связи между значениями объемов дефицитов или избытков воды для соседних крупных рек носят размытый характер. Тем не менее, прослеживается некая тенденция в группировке лет наиболее экстремальной водности в однородных гидрологических регионах. Для всех рек арктической зоны характерны циклические колебания объемов превышений над пороговыми значениями. Так, в1970-х гг. объемы превышений были несколько выше, чем в настоящее время, особенно в бассейне Оби (рис. 8б). А вот для объемов дефицита практически на всех исследуемых водных объектах наблюдается сокращение (рис. 9). Так, на Оби после 1972 г. наблюдаются лишь отдельные годы, когда возникает дефицит воды. А в бассейне Енисея последний дефицитный период наблюдался в 1968 г.

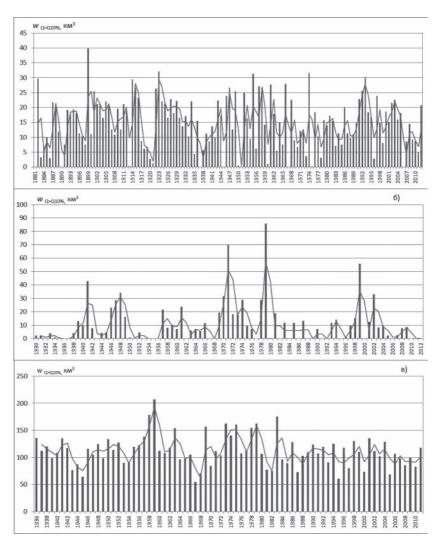
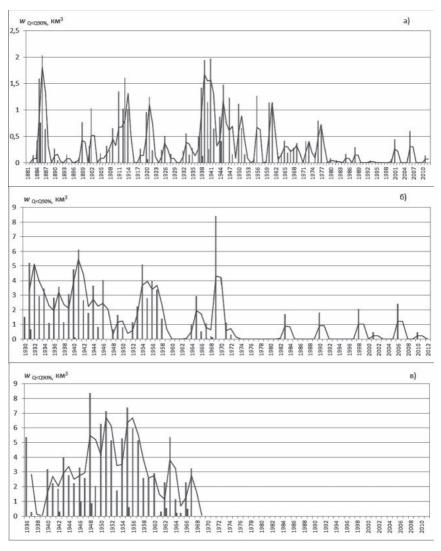


Рис. 7. Распределение превышений (1) и дефицитов (2) на реках российской Арктики по месяцам

Выводы


Путем обработки многолетних временных рядов среднемесячных расходов воды для замыкающих створов рек российской Арктики были рассчитаны параметры экстремальных гидрологических явлений, определяемых по характеристикам фрагментов гидрографа стока за пределами заданных пороговых значений расходов воды (10% и 90% обеспеченностей). На основании анализа параметров объема, продолжительности, интенсивности и повторяемости экстремальных явлений получены следующие основные результаты.

- 1. Повторяемость экстремально многоводных и маловодных периодов, а также объемы стока и водного дефицита в течение этих периодов связаны между собой. Чем чаще на реке формируются периоды экстремально высоких месячных расходов, тем чаще на ней формируются и периоды экстремального маловодья. Чем больше в среднем объемы стока реки в периоды экстремально высокой водности, тем глубже водный дефицит в периоды низкой водности.
- 2. Интенсивность экстремальных гидрологических явлений, выражаемая через отношение объема стока в период высокой водности или водного дефицита к соответствующей продолжительности, растет с увеличением площади водосбора. Это означает, что с уве-

Рис. 8. Изменение объема превышений (км³) для р. Северная Двина — Усть-Пинега (а), р. Обь – г. Салехард (б), р. Енисей – г. Игарка (в)

личением площади водосбора объемы речного стока в периоды экстремально высокой водности или глубина водного дефицита в периоды низкой водности растут быстрее, чем продолжительности этих явлений;

Рис. 9. Изменение объема дефицита (км³) для р. Северная Двина — Усть-Пинега (а), р. Обь — г. Салехард (б), р. Енисей — г. Игарка (в)

3. Выявлены следующие тенденции многолетних изменений параметров экстремальных гидрологических явлений в течение периодов от начала-середины XX до начала XXI веков:

- для рек арктической зоны характерны циклические колебания объемов превышений и дефицитов, имеющие повторяемость примерно 11–12 лет;
- наибольшие превышения пороговых значений в арктической зоне Сибири и Дальнего Востока наблюдались в 1970-х годах. Некоторое повышение прослеживается и в конце 1990-х годов;
- одновременно, практически на всех исследуемых водных объектах наблюдается сокращение дефицитов. Так, на Оби после 1972 г. есть лишь отдельные годы, когда возникает дефицит. В бассейне Енисея последний дефицитный период наблюдался в 1968 г.;
- цикличность колебаний стока арктических рек накладывается на современные тренды к потеплению климата, что приводит к увеличению водности межени.

Литература

- *Kireeva M.B., Frolova N.L., Rets E.P., Telegina E.A., Telegina A.A., Ezerova N.N.*The role of seasonal and occasional floods in the origin of extreme hydrological events // Proc. IAHS. 2015. 369. Pp. 37–41. DOI:10.5194/piahs-369-109-2015.
- Фролова Н.Л., Гельфан А.Н., Киреева М.Б., Рец Е.П., Телегина Е.А. Анализ экстремальных гидрологических явлений в пределах бассейнов равнинных рек Европейской территории России // В сб. «Научное обеспечение реализации «Водной стратегии Российской Федерации на период до 2020 г.», 2015. Карельский научный центр РАН Петрозаводск. Том. 2. С. 51–58.