Мокиенко Олеся Александровна

Интерфейс мозг-компьютер, основанный на воображении движения, в реабилитации больных с последствиями очагового поражения головного мозга

03.03.01 Физиология14.01.11 Нервные болезни

Автореферат диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в лаборатории математической нейробиологии обучения Федерального государственного бюджетного учреждения науки Института высшей нервной деятельности и нейрофизиологии РАН.

Научные руководители: доктор биологических наук, профессор

Александр Алексеевич Фролов,

доктор медицинских наук, профессор Людмила Александровна Черникова

Официальные оппоненты: доктор биологических наук

Людмила Алексеевна Жаворонкова,

доктор медицинских наук

Анастасия Вячеславовна Переседова

Ведущее учреждение: Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАН.

Защита состоится "_25_" сентября 2013 г. в 14.00 часов на заседании диссертационного совета Д 002.044.01 по защите докторских диссертаций при Федеральном государственном бюджетном учреждении науки Институте высшей нервной деятельности и нейрофизиологии РАН по адресу: г. Москва, ул. Бутлерова, 5а.

С диссертацией можно ознакомиться в библиотеке ИВНД и НФ РАН по адресу: г. Москва, ул. Бутлерова, 5а.

Автореферат разослан "	66	2013 г.
------------------------	----	---------

Ученый секретарь Диссертационного совета

доктор биол.наук

right

В.Н.Иерусалимский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Двигательные нарушение в виде гемипарезов различной степени выраженности являются наиболее частым последствием инсульта и приводят к значительному ограничению функциональной независимости и снижению качества жизни больных. В основе обучения и восстановления после повреждения нейрональных структур лежит способность сенсорной и двигательной коры к динамической реорганизации.

Применение таких методов двигательной реабилитации, как лечебная физкультура, терапия, основанная на ограничении здоровой конечности, тренировка в условиях виртуальной реальности возможны при хотя бы частичной сохранности двигательных функций. Вместе с тем, не существует признанной и эффективной стратегии для реабилитации тяжелых постинсультных пациентов с полностью парализованными мышцами, когда отсутствуют даже резидуальные движения.

В случае грубого пареза или плегии перспективным методом стимулирования пластичности мозга является воображение движений. Как показано во многих работах [Crammond 1997; Jeannerod 2001; Stippich, Ochmann et al. 2002; Ehrsson, Geyer et al. 2003; Neuper, Scherer et al. 2005], воображение движений подчиняется тем же принципам двигательного контроля и поэтому может стимулировать те же пластические механизмы мозга, что и их реальное Контролировать воображение исполнение. движения онжом при интерфейса мозг-компьютер (ИМК), который преобразует ЭЭГ-сигналы мозга, возникающие при воображении движения, в команды внешнему устройству [Prasad, Herman et al. 2010]. Сигналом активности мозга в данном случае является модуляция сенсорно-моторного ритма (CMP) [Pfurtscheller and Lopes da Silva 1999].

На этих наблюдениях, а также на идее использовать биологическую обратную связь, позволяющую пациенту контролировать степень своей сосредоточенности на выполнении задачи, собственно, и основаны ожидания эффективности ИМК как средства двигательной реабилитации. В то же время до сих пор остаются нерешенными следующие вопросы: 1) особенности изменения нейрофизиологических показателей активности головного мозга при обучении

воображению движения с помощью ИМК в динамике у здоровых людей; 2) возможность обучения управлению ИМК, основанного на регистрации ЭЭГ, у больных с очаговым поражением головного мозга при разной локализации и латерализации очага повреждения и разной давности заболевания; 3) клиническая эффективность технологии ИМК у больных с грубыми двигательными нарушениями.

Цель настоящего исследования – изучить особенности активации структур головного мозга в процессе тренировок управления ИМК у здоровых и больных с очаговым поражением головного мозга и оценить эффективность применения технологии ИМК для реабилитации этих больных.

Для достижения цели работы были поставлены следующие задачи:

- 1. Отработать протокол тренинга у здоровых и изучить особенности пространственно-временных паттернов ЭЭГ-активности, наиболее часто возникающих при управлении ЭЭГ-ИМК в норме.
- 2. Изучить с помощью функциональной магнитно-резонансной томографии (фМРТ) и навигационной транскраниальной магнитной стимуляции (нТМС) особенности активации структур головного мозга и возбудимости корковых нейронов во время воображения движения у обученных и необученных здоровых испытуемых.
- 3. Оценить качество управления ИМК у пациентов с очаговым поражением головного мозга.
- 4. Изучить особенности пространственно-временных паттернов ЭЭГ-активности, наиболее значимых для управления ИМК у пациентов при разной локализации очага поражения.
- 5. Исследовать с помощью фМРТ особенности активации ЦНС в процессе тренировок у пациентов с очаговым поражением головного мозга.
- 6. Оценить клиническую эффективность тренировок ИМК, основанного на воображении движений, у пациентов с плегией или грубым парезом дистального отдела руки в зависимости от клинических особенностей.

Научная новизна исследования.

- 1. Впервые при курсовом использовании ИМК у здоровых лиц помимо двух регулярно возникающих значимых компонент в области центральной борозды каждого полушария, у 43% здоровых испытуемых выявлена третья по частоте встречаемости компонента в области Сz электрода.
- 2. Впервые с помощью фМРТ и нТМС выявлены отличия активации структур головного мозга при воображении движения у обученных и необученных управлению ИМК здоровых людей. Показано, что только у обученных испытуемых при фМРТ наблюдалась активация первичной моторной коры, а при нТМС признаки, свидетельствующие о повышении возбудимости моторной коры.
- 3. Впервые показана возможность применения ЭЭГ-ИМК для реабилитации пациентов с грубыми двигательными нарушениями центрального генеза. Определено, что достигнутое качество управления интерфейсом у больных достоверно не отличается от данного показателя у здоровых лиц, не зависимо от давности заболевания и латерализации очага поражения.
- 4. Впервые описаны нейрофизиологические особенности активации головного мозга при управлении ИМК у пациентов с разной локализацией очага поражения головного мозга.
- 5. Впервые оценена эффективность применения ИМК, основанного на воображении движения, у пациентов с очаговым повреждением головного мозга и грубым парезом кисти.

Теоретическая и практическая значимость. Изучение особенностей активации структур головного мозга при воображении движения с помощью функциональных методов нейровизуализации (фМРТ, нТМС) у здоровых и больных с очаговым поражением головного мозга способствует уточнению механизмов нейропластичности, лежащих в основе восстановления нарушенных двигательных функций.

Выявленные различия в активации структур головного мозга при воображении движения у обученных и необученных управлению ИМК здоровых людей позволяют предположить, что в основе обучения воображению движения и обучения двигательным навыкам лежат общие механизмы.

Полученные данные имеют важное практическое значение, поскольку предложенная технология ИМК, основанная на анализе паттернов ЭЭГ, соответствующих воображению движений, может быть использована для клинического применения у больных с очаговым поражением головного мозга.

Основные положения, выносимые на защиту:

- 1. У обученных и необученных здоровых лиц при фМРТ-картировании функции воображения движения определяется активация разных зон, а при нТМС повышение возбудимости моторной коры определяется только у обученных здоровых лиц.
- 2. Освоение технологии ИМК и достигнутое качество управления интерфейсом у пациентов с очаговым поражением головного мозга и выраженными двигательными нарушениями в кисти достоверно не отличается от данного показателя у здоровых лиц.
- 3. Локализация и спектральная плотность значимых для управления интерфейсом ЭЭГ-сигналов активности мозга у пациентов с очаговым поражением головного мозга и выраженными двигательными нарушениями в кисти зависят от локализации очага поражения.
- 4. У пациентов с очень грубыми двигательными нарушениями кисти включение в реабилитационную программу тренировки воображения движения, контролируемого ИМК, повышает эффективность восстановительной терапии, в особенности, в раннем восстановительном периоде.

Публикации. По теме диссертации опубликовано 6 печатных работ, из них 4 статьи в журналах, рекомендованных ВАК. Заявлен 1 патент на изобретение.

Апробация работы.

Доклад и обсуждение материалов диссертационной работы состоялись 08 апреля 2013 г. на совместном заседании трех подразделений ИВНД и НФ РАН: лаборатории математической нейробиологии обучения, лаборатории высшей нервной деятельности человека и лаборатории общей и клинической нейрофизиологии.

Основные положения диссертации обсуждены на 6 научных конференциях: The International Neurorehabilitation Symposium (Zurich, 2011), XV и XVI научных школах-конференциях молодых ученых ИВНД и НФ РАН (Москва, 2011 и 2012), Международной конференции студентов, аспирантов и молодых ученых «Ломоносов-2012» (Москва, 2012), Конференции молодых ученых-медиков «Инновационные технологии в медицине XXI века» (Москва, 2012), VII Всероссийской с международным участием школе-конференции по физиологии мышц и мышечной деятельности «Новые подходы к изучению классических проблем» (Москва, 2013).

Объем и структура диссертации. Диссертация изложена на 108 страницах машинописного текста и состоит из введения, обзора литературы, описания материала и методов исследования, собственных результатов, обсуждения, выводов, практических рекомендаций и приложения. Работа иллюстрирована 21 рисунком и 9 таблицами. Библиографический указатель включает 10 работ отечественных авторов и 170 работ зарубежных авторов.

МАТАРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Работа проводилась в Институте высшей нервной деятельности и нейрофизиологии РАН на базе лаборатории математической нейробиологии обучения и в Научном центре неврологии РАМН на базе отделения нейрореабилитации и физиотерапии. Протокол исследования был одобрен локальным этическим комитетом Научного центра неврологии РАМН. Все испытуемые перед началом исследования подписали добровольное информированное согласие.

Характеристика испытуемых. В исследовании участвовало 13 здоровых добровольцев в возрасте от 24 до 68 лет (медиана возраста – 37 [25, 49] лет), 9 мужчин и 4 женщины.

Кроме того, в исследовании участвовали 36 пациентов с гемипарезами в результате очагового поражения головного мозга, из них 26 мужчин и 10 женщин, в возрасте от 34 до 70 лет (медиана – 52,5 [42,5; 57] лет), с давностью заболевания (инсульта или травмы головного мозга) от 1 месяца до 8 лет (медиана давности

заболевания составила 11,5 [3; 21,5] месяцев). В раннем восстановительном периоде находились 14 пациентов, в позднем и резидуальном – 22 пациента.

Критерии отбора больных для данного исследования: мужчины или женщины в возрасте 18-80 лет, первичный инсульт или травма головного мозга, единичный очаг повреждения головного мозга, давность заболевания ≥ 1 мес., выраженный парез или плегия в кисти, без сенсорной афазии, ≥ 24 баллов по MMSE, без тяжелых сопутствующих патологий.

У большинства пациентов (25 из 36) характер НМК был ишемический, у 10 из 36 — геморрагический и у 1 пациента — причиной очагового повреждения головного мозга являлась тяжелая черепно-мозговая травма. Очаг поражения локализовался в правом полушарии у 20 пациентов, в левом — у 14 и у 2-х пациентов в стволе головного мозга. Среди наблюдаемых больных корковоподкорковое повреждение было у 2 пациентов, а подкорковое — у 34 пациентов. У всех пациентов в клинической картине наблюдался очень грубый парез в руке, по шкале ARAT медиана = 0 [0; 4].

16 пациентов, составили основную группу, в комплексное лечение которых были включены тренировки ИМК, и 20 пациентов были включены в группу сравнения, которые получали только традиционную комплексную терапию. Основная группа и группа сравнения были сопоставимы по возрасту, давности инсульта и степени выраженности неврологического дефицита. Все испытуемые – правши (согласно Эдинбургскому опроснику мануальной асимметрии: R>40%).

Обучение управлению ИМК. В исследовании использовался ИМК, основанный на анализе паттернов ЭЭГ при воображении движения рук. Макет ИМК состоит из следующих элементов (Рис. 1): система активных электродов АсtiCap фирмы Brain Products (Германия) для регистрации ЭЭГ (1), энцефалографический аналого-цифровой преобразователь NBL640 производства ООО «НейроБиоЛаб» (2), персональный компьютер (операционная система Windows 7) с программным обеспечением для синхронной передачи данных, выделения рабочих показателей ЭЭГ и классификации сигналов для распознавания управляющей команды в реальном времени (3).

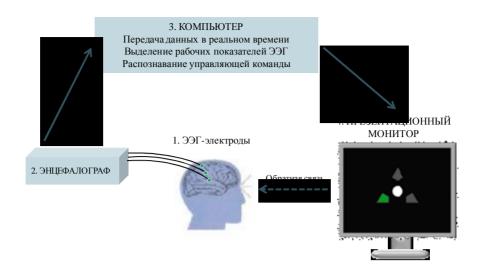


Рис. 1. Блок-схема макета ИМК, применяемого в данном исследовании.

Во время эксперимента испытуемый сидел в удобном кресле так, что голова находилась на расстоянии 1 метра от компьютерного монитора, на котором ему предъявлялись визуальные инструкции. В центре экрана находился кружок, служащий для фиксации взгляда, и расположенные вокруг него 3 ромбовидные стрелки для обозначения инструкций. Испытуемый выполнял одну из трех инструкций: расслабиться, представить движение левой или правой руки. В качестве воображения движения руки предлагалось воображать медленное сжатие кисти в кулак. По инструкции расслабиться (покой) испытуемый должен был спокойно сидеть и смотреть в центр экрана. Руки испытуемого лежали на подлокотниках кресла в нейтральном положении лучезапястного сустава. Инструкции предъявлялись в случайном порядке, каждая в течение 10 секунд. Результаты распознавания выполняемой ментальной задачи предъявлялись испытуемому по зрительной обратной связи: метка в середине фиксирующая взор, принимала зеленый цвет, если классификатор распознавал задачу, соответствующую предъявляемой инструкции, и оставалась белой, если распознавалась другая задача.

Регистрация ЭЭГ проводилась с помощью 30 электродов, расположенных по схеме 10-20. Под каждый электрод наносился специальный гель для улучшения контакта с поверхностью головы. Сигналы ЭЭГ фильтровались в полосе частот от 5 до 30 Гц. В исследовании применялся классификатор паттернов ЭЭГ,

основанный на методе Байеса [Бобров, Коршаков и др., 2012]. В качестве показателя точности классификации использовались индекс «каппа Коэна» (при идеальном распознавании к=1, при случайном распознавании к =0) [Коhavi and Provost 1998] и процент правильных ответов классификатора (распознавание выше случайного при >35%). Определение источников активности, наиболее значимых для функционирования ИМК, проводилось с помощью метода независимых компонент (Independent Component Analysis) [Frolov, Husek et al. 2011].

С каждым испытуемым (кроме испытуемых группы сравнения и контрольной группы) эксперимент проводился в течение 10-12 дней по одной экспериментальной серии в день длительностью 20-30 минут. Интервалы между экспериментальными днями составляли от 1 до 4 дней.

Функциональная МРТ. фМРТ-исследование проводилось с помощью томографа Magnetom Avanto, 1.5 Т фирмы Siemens, Erlangen, Германия. Исследование начиналось со стандартного режима Т2 турбо-спин эхо в аксиальной проекции для исключения патологических изменений вещества головного мозга (время повторения 4000 мс, время эхо 106 мс, толщина среза 5,0 мм, матрица 230 х 230 мм, время исследования 2:02 мин). Для получения анатомических данных выполнялось исследование в режиме Т1 градиентное эхо с изометрическими вокселами в сагиттальной проекции (Т1 Multiplanar reconstruction; время повторения — 1940 мс, время эхо — 3,1 мс, время подачи инвертирующего импульса — 1100 мс, толщина среза — 1,0 мм, матрица 256 х 256 мм, время исследования 4:23 мин).

Затем испытуемому предъявлялась та же парадигма, что и во время сеансов ИМК, но без обратной связи. Было получено 3 набора функциональных данных для каждого из состояний: покой (8 повторений), воображения сжатия в кулак правой (4 повторения) или левой руки (4 повторения) в режиме Т2*-градиентное эхо в аксиальной проекции (время повторения 3800 мс, время эхо 50 мс, матрица 192 х 192 мм, толщина среза 3 мм, с использованием подавления сигнала от жировой ткани и коррекции движения). Время исследования составляло 6:10 мин.

Оценка полученных данных проводилась при помощи пакета для статистической обработки SPM8 (Welcome Trust Centre of Neuroimaging, London,

UK) в среде MATLAB. Результаты, полученные для каждого отдельного испытуемого, были использованы для проведения группового анализа, целью которого было выявить области активности, специфические для выполняемых задач.

Навигационная ТМС. Нейрофизиологическое обследование здоровых испытуемых проводилось с использованием навигационной транскраниальной магнитной стимуляции (нТМС) на аппарате NBS eXimia Nexstim (Финляндия). Для стимуляции использовалась 8-образная моноимпульсная катушка Mono Pulse Nexstim. Длительность магнитного импульса 280 мкс, максимальная напряженность магнитного поля 199 В/м. С каждой мышцы регистрировались вызванные моторные ответы (ВМО), их амплитуды, латентности. Составлялись карты моторных представительств.

Для построения трехмерной модели головного мозга в системе NBS eXimia Nexstim и точной локализации места стимуляции, осуществлялась загрузка данных MPT и фMPT в систему Nexstim и соотнесение реальных анатомических образований (переносица, козелки ушей) с данными образованиями на MPT.

Регистрирующие электроды накладывались согласно атласу [Leis and Trapani 2000] на m. Abductor pollicis brevis (APB), m. Flexor carpi ulnaris (FCU), m. Extensor carpi radialis (ECR). Эти мышцы главным образом участвуют в сжатии кисти в кулак при нейтральном положении лучезапястного сустава [Капанджи, 2009].

В первой фазе эксперимента сначала проводили предварительную магнитную стимуляцию зоны интереса с выявлением ВМО с амплитудой 100-500 мкВ и напряженностью магнитного поля в точке стимуляции 80-110 В/м. Пассивный моторный порог определяли в точке с максимальной амплитудой ВМО с использованием специального режима NBS eXimia Nexstim «Повтор стимула». За моторный порог была принята минимальная интенсивность магнитной стимуляции (в %), при которой более чем в половине (из 10) повторных стимулов регистрировался ВМО с амплитудой более 50 мкВ. Затем проводили картирование моторного представительства интересующих мышц на интенсивности 110% от выбранного моторного порога.

Во второй фазе испытуемого просили воображать медленное сжатие кисти в кулак, при этом повторно определялся пассивный порог ВМО. Затем повторно производилось картирование моторного представительства с изначальной интенсивностью 110% порога ВМО, но одновременно с воображением сжатия руки в кулак.

Для контроля расслабленности мышц руки в течение всего эксперимента регистрировалась накожная электромиограмма. Во время картирования моторных зон регистрировались максимальная и средняя амплитуды ВМО, а также площадь карты моторного представительства.

Клиническое обследование пациентов. Для оценки двигательной функции руки у пациентов применялась шкала ARAT (Action Research Arm Test), в которой оценивается способность выполнения шарового, цилиндрического, щипкового захватов кисти, а также движений в проксимальном отделе руки. Степень спастичности оценивалась с помощью шкалы Ashworth, когнитивный статус – по шкале Mini-Mental State Exam.

Статистическая обработка результатов проводилась с помощью критерия Манна-Уитни (U-тест) на персональном компьютере с применением пакета прикладных программ STATISTICA 6.0 (StatSoft®, 2003). Данные представлены в виде медианы и 25%, 75% квартилей медианы. Статистически значимыми различия считались при р < 0.05.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

1. Обучение управлению ИМК у здоровых лиц.

Для 7 здоровых испытуемых, обученных управлению ИМК, методом независимых компонент получены 2 наиболее значимые для управления ИМК и регулярные компоненты (пространственно-временные паттерны ЭЭГ-активности, служащие сигналом активности мозга), которые мы связали с десинхронизацией мю-ритма во время воображения движения. У 6 испытуемых десинхронизация происходила в диапазоне мю-ритма (7-13 Гц, рис. 2, A, B) и у 1 испытуемого – в диапазоне нижнего бета-ритма (14-26 Гц, рис. 2, C). Положение и ориентация этих двух компонент соответствуют расположению представительства рук в первичных сенсомоторных областях центральной борозды коры головного мозга [Блум, Лейзерсон et al. 1988]. Эти компоненты выделялись у испытуемых регулярно каждый экспериментальный день со дня их возникновения (не всегда с первого дня).

На Рисунке 2 показан вклад каждой из двух наиболее значимых компонент в потенциалы, регистрируемые на поверхности головы (для трех разных испытуемых). Спектральные плотности активности для этих компонент приведены для трех различных состояний: покой — синяя кривая, воображение движения правой руки — красная кривая, воображение движения левой руки — зеленая кривая. Пик спектральной плотности для этих компонент соответствует диапазону сенсорно-моторного ритма (СМР). Во время воображения движения (зеленая и красная кривые) происходила реакция десинхронизации СМР в соответствующем полушарии (Рис 2, A) (по [Pfurtscheller, Brunner et al. 2006]).

У одного испытуемого во время воображения движения, помимо реакции десинхронизации СМР в контралатеральном полушарии, наблюдалась синхронизация СМР в ипсилатеральном полушарии (Рис 2, В), то есть реакция синхронизации-десинхронизации, связанной с событием [Pfurtscheller, Brunner et al. 2006].

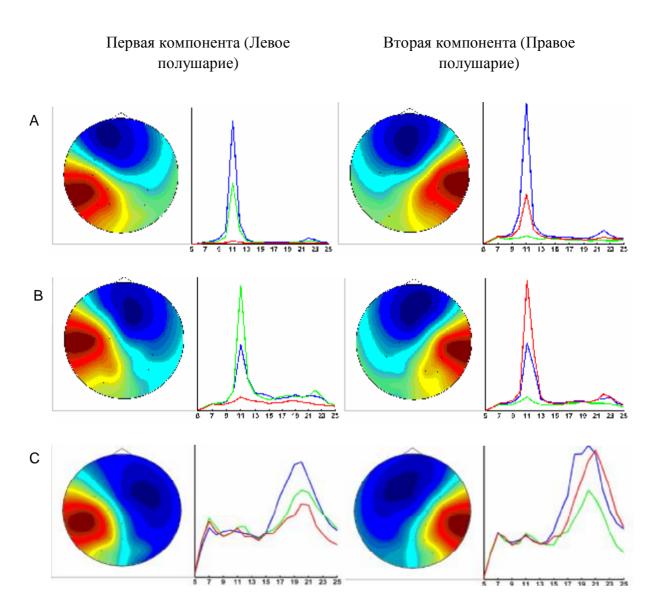


Рис. 2. Топография значимых компонент и их спектральные плотности при трех состояниях, «норма». По оси абсцисс — частота в герцах, по оси ординат — спектральная плотность, нормированная на максимальное значение. A, B, C — данные для трех разных испытуемых.

Также у 3 из 7 испытуемых (то есть у 43%) в качестве третьей по частоте встречаемости компоненты выделялся источник сигнала с локализацией ближе к проекции Сz электрода (то есть в зоне вертекса) (Рис. 3). В этом источнике во время воображения движения как правой, так и левой руки происходила десинхронизация ЭЭГ-ритма в диапазоне мю и нижнего бета (неспецифическая для каждой из рук).

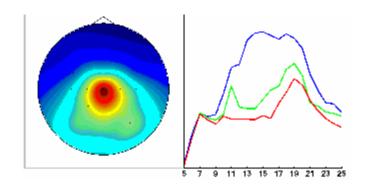


Рис. 3. Компонента с локализацией в области Сz электрода, здоровый испытуемый.

Для изучения особенностей возбудимости нейронов мозга во время воображения движения с помощью нТМС и фМРТ было проведено исследование, в котором участвовали 5 обученных (операторы ИМК) и 6 необученных здоровых добровольцев.

У операторов ИМК воображение движения сопровождалось активацией соматосенсорной и первичной моторной коры (поля 3 и 4 по Бродману соответственно), премоторной и дополнительной моторной коры (поле 6 по Бродману) в контралатеральном полушарии, а также мозжечка ипсилатерально (групповой анализ в программе SPM8, P< 0.0005) (Рис. 4).

У необученных испытуемых при групповом анализе выявлена активация следующих зон: соматосенсорная кора (3 по Бродману), премоторная и дополнительная моторная кора (6 по Бродману) в контралатеральном полушарии, мозжечок ипсилатерально. Важно отметить, что активации первичной моторной коры у необученных испытуемых при групповом анализе фМРТ не выявлено (Рис. 5). По поводу роли первичной моторной коры у здоровых людей в процессе воображения движения в литературе существуют разногласия, так как в ряде работ не наблюдалась активация данной зоны при воображении движения [Parsons, Fox et al. 1995; Hanakawa, Immisch et al. 2003; Meister, Krings et al. 2004; de Lange, Hagoort et al. 2005]. В нашем исследовании активация первичной моторной коры наблюдалась только в группе операторов ИМК. В связи с этим можно предположить, что у людей, которым удается воображать движение, или которые

обучены этому, например, с помощью интерфейса, при воображении движения задействована и первичная моторная кора.

Площадь активации соматосенсорной, премоторной и дополнительной моторной коры при воображении движения была значительно больше в группе необученных испытуемых, что можно объяснить принципом локализованности функции при освоении нового навыка.

У необученных здоровых испытуемых воображение движения сопровождалось также активацией ассоциативных зон и островка (40 поле по Бродману билатерально, поле 9 контралатерально, 13 поле билатерально) (групповой анализ в программе SPM8, р < 0,0005) (Рис. 5). Данные участки играют важную роль в оценке когнитивных стратегий и моторных программ, в планировании движения, интеграции сенсорной и мнемонической информации, связаны с рабочей памятью [Gerardin, Sirigu et al. 2000; Lafleur, Jackson et al. 2002; Jackson, Lafleur et al. 2003; Derrfuss, Brass et al. 2004]. У обученных воображению движения испытуемых активация ассоциативных зон была незначительна или отсутствовала.

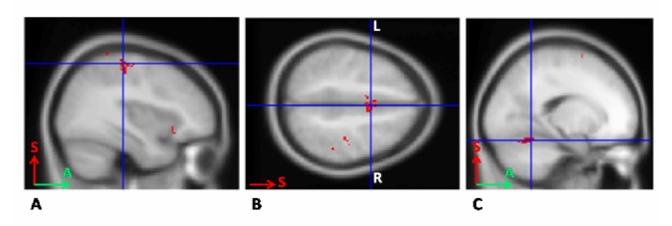


Рис. 4. Зоны активации головного мозга при воображении сжатия кисти в кулак у операторов ИМК (групповой анализ фМРТ, «ВД левой руки > сост. покоя», p < 0.0005): A - 3 и 4 поля по Бродману, B - дополнительная моторная кора, C - мозжечок.

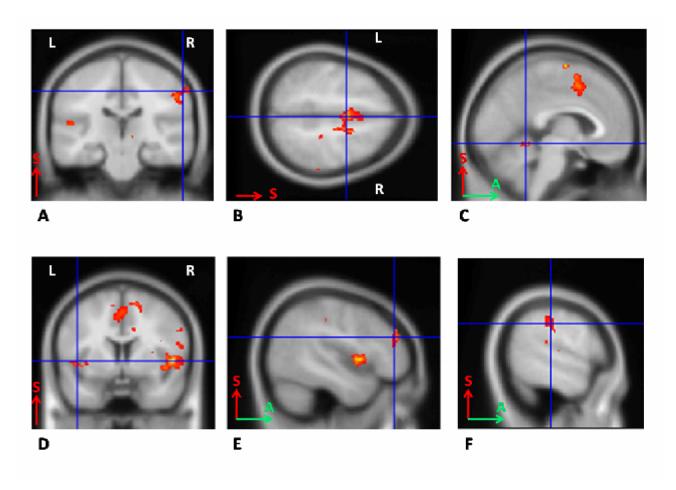


Рис. 5. Зоны активации головного мозга при воображении сжатия кисти в кулак у необученных испытуемых (групповой анализ фМРТ, «ВД левой руки > сост. покоя», p < 0.0005): A - 3 поле по Бродману, B - дополнительная моторная кора, C - мозжечок, D-островок, E-9 поле по Бродману, F - 40 поле по Бродману.

При нТМС-исследовании у операторов ИМК во время воображения движения наблюдалось снижение порога возбудимости двигательной коры на 6-18% (медиана изменения составила 17%), у необученных испытуемых изменение порога было незначительным и неоднонаправленным: у троих испытуемых выявлено снижение порога на 1-8% от фонового значения, у двух испытуемых наблюдалось повышение порога на фоне воображения, у одного испытуемого порог при воображении движения не изменился (Рис. 6). Различие между группами достоверно (U-тест, p=0,01).

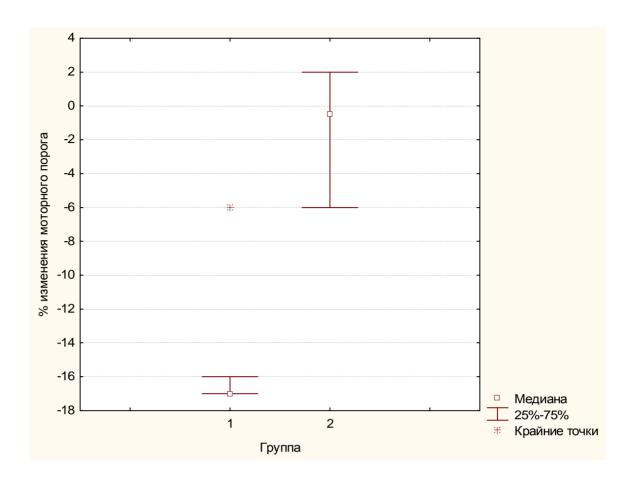


Рис. 6. Изменение моторного порога при воображении движения: в процентах от фона. Группа1 — операторы ИМК, группа2 — необученные управлению ИМК. U-тест: p=0,01.

По сравнению с необученными испытуемыми, у операторов ИМК при воображении движения средний ответ с мышц APB и ECR достоверно увеличивался. Медиана изменения моторного ответа для APB составила 63% у первой группы, и -11% у второй (p=0,01); медиана изменения моторного ответа для ECR у первой группы составила 150%, а у второй 1% (p=0,03). Для FCU в обеих группах выявлено достоверное увеличение средней амплитуды ВМО во время воображения движения, медиана изменения моторного ответа для данной мышцы у первой группы составила 78% по сравнению с 12% у второй группы (p=0,08). Наряду с этим у испытуемых 1 группы (операторов ИМК) во время воображения движения на фоне снижения порога возбудимости площадь коры, при стимуляции которой регистрировались ВМО мышц-мишеней, оказалась больше, чем в покое (Рис. 7). У испытуемых 2 группы подобного не было выявлено.

Эти данные можно расценивать как состояние повышения возбудимости моторной коры. Полученные результаты согласуются с данными исследований с применением классической ТМС (без навигации на MPT) [Fadiga, Buccino et al. 1999; Hashimoto and Rothwell 1999; Vargas, Olivier et al. 2004; Cicinelli, Marconi et al. 2006; Stinear, Byblow et al. 2006]. В нашем же исследовании мы использовали навигационную ТМС, что позволило получить точные карты представительства интересующих мышц при стимуляции на фоне воображения движения.

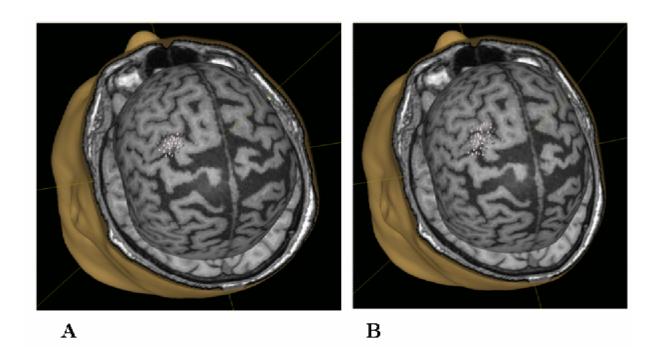


Рис. 7. Испытуемый из группы 1 (обученный управлению ИМК): локализация моторного представительства мышц-мишеней. A — фоновое картирование; B-воображение движения.

Сопоставление между нТМС и фМРТ — карт показало перекрытие, но не полное соответствие выявленных в нашем исследовании моторных зон (Рис. 8), что можно объяснить следующим образом. В то время как ТМС направленно и выборочно стимулирует кортикоспинальные пути, фМРТ связана с изменением ВОLD-сигнала в ответ на выполнение оператором определенных команд. В одном крупном исследований, посвященном сравнительному изучению этих двух методов нейровизуализации, было показано, что дистанция между моторными зонами, найденными с помощью фМРТ и нТМС, составляла от 0 до 21,7 мм (3,70 \pm 4,85) [Neuvonen, Niskanen et al. 2009].

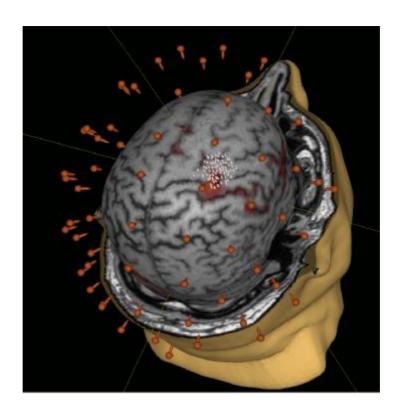


Рис. 8. Сопоставление карт фМРТ и нТМС у оператора ИМК во время воображения сжатия кисти. Оранжевые метки – проекции ЭЭГ-электродов.

2. <u>Особенности управления ИМК у пациентов с очаговым поражением</u> головного мозга.

Обучение управлению ИМК прошли 13 пациентов с очаговым повреждением головного мозга (основная группа) и 7 здоровых испытуемых в качестве группы контроля. Достигнутые результаты управления ИМК для обученных испытуемых обеих групп представлены в Таблице 1. По показателям качества управления интерфейсом (каппа Коэна и процент распознавания) отличия между основной группой и группой контроля не выявлено (р>0,05).

Среди пациентов качество управления ИМК не зависело от латерализации очага повреждения (при сравнении подгрупп пациентов с левосторонним или правосторонним гемипарезом: p=0,89), и реабилитационного периода (при сравнении пациентов в раннем или позднем и резидуальном периоде p=0,08).

Таким образом, несмотря на наличие очагового повреждения головного мозга и плегии в кисти, пациентам с разной давностью заболевания, так же как и

здоровым людям, удается управлять ИМК, основанным на регистрации сенсомоторного ритма.

Таблица 1. Достигнутые значения распознавания классификатором ментальных задач у испытуемых двух групп.

	Каппа Коэна	% распознавания
Пациенты	0,37 [0,19; 0,43]	55,5 [45; 59,5]
Здоровые	0,33 [0,22; 0,44]	54 [47; 63]
U-тест	p=0,77	p=0,98

У пациентов с подкорковой локализации очага поражения получены 2 наиболее значимые для управления ИМК компоненты, их топографическое распределение аналогично таковому у здоровых испытуемых и соответствует расположению представительства рук в первичных сенсомоторных областях центральной борозды коры головного мозга как здорового полушария, так и полушария с очагом инсульта (Рис. 9). Эти 2 значимые для управления ИМК компоненты у 10 пациентов с подкорковой локализацией инсульта, так же как и у здоровых испытуемых, были связаны с реакцией десинхронизации в диапазоне мюритма (Рис. 9, A), и у 1 пациента – мю- и частично бета-ритма (Рис. 9, B) во время воображения движения. У 4 пациентов реакция десинхронизация была неспецифическая для каждой руки (Рис 9, C).

У 5 из 11 пациентов с подкорковым инсультом также выделялся источник сигнала с локализацией ближе к зоне проекции Сz -электрода. Этот источник у пациентов с подкорковым поражением выделялся не каждый экспериментальный день и в нем, как и у здоровых испытуемых, во время воображения движения происходила неспецифическая для каждой из рук десинхронизация ритма в диапазоне мю и нижнего бета.

При <u>обширном повреждении двигательной коры</u> (2 пациента) в здоровом полушарии выделялся источник сигнала по локализации и по спектральной плотности такой же как у здоровых испытуемых. В поврежденном полушарии значимой компоненты с типичной локализацией не было выявлено. Однако, у

таких пациентов источник сигнала с локализацией ближе к зоне проекции Сz регистрировался регулярно и был значимым для управления. У одного из пациентов с повреждением двигательной коры в данном источнике во время воображения движения происходила неспецифическая для каждой из рук десинхронизация ритма в диапазоне нижнего бета, а у второго пациента значимая компонента с локализацией в области вертекса была связана с десинхронизаций ритма в диапазоне мю-ритма при воображении движения парализованной руки (Рис. 10, A). Эта компонента также была постоянной и регистрировалась каждый экспериментальный день.

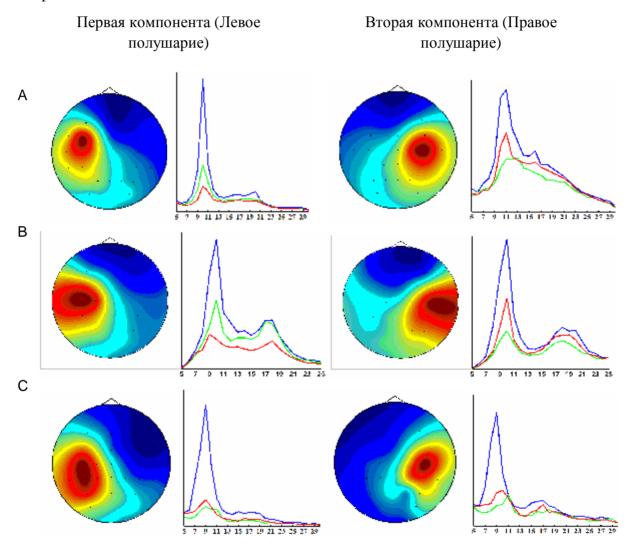


Рис.9. Топографические распределения значимых компонент и спектральные плотности их интенсивности при трех ментальных состояниях у пациентов с подкорковым повреждением головного мозга. 3 разных пациента.

Среди пациентов, как и среди здоровых испытуемых, встречались следующие варианты изменения активности мозга, с которыми было связано улучшение качества управления ИМК (овладение навыком управления ИМК): а) выделение значимых компонент с первых дней и усиление реакции десинхронизации в процессе тренировки; б) отсутствие значимых компонент в первые дни и появление их в процессе тренировки с последующим усилением реакции десинхронизации. Топографическое распределение не менялось для каждой из значимых компонент в результате тренировки.

Таким образом, при повреждении первичной моторной и соматосенсорной коры модуляция ЭЭГ-ритма в диапазоне мю- и нижнего бета-ритма при воображении движения может происходить в источнике с локализацией в зоне вертекса. При этом, возможна специфическая десинхронизация ритма при воображении движения парализованной конечности. Эти данные открывают возможности применения неинвазивного, основанного на воображении движения ИМК, у пациентов с общирным повреждением первичной моторной и соматосенсорной коры. Если прогнозы на восстановление у таких пациентов неблагоприятны или крайне неблагоприятны, неинвазивный ИМК на основе воображения движения можно использовать в качестве ассистирующей технологии (например, для управления экзоскелетоном или любым другим внешним техническим устройством), что может повысить качество жизни и степень самообслуживания этих пациентов.

Для изучения особенностей активации головного мозга во время воображения движения у пациентов с помощью фМРТ были исследованы 7 пациентов с подкорковым повреждением головного мозга после 5-7 сеансов ИМК. У пациентов, прошедших курс тренировки управления ИМК воображение движения сопровождалось активацией первичной моторной коры (поле 4 по Бродману), премоторной (поле 6 по Бродману) и дополнительной моторной коры в контралатеральном полушарии, а также мозжечка ипсилатерально (групповой анализ в программе SPM8, р < 0,0005).

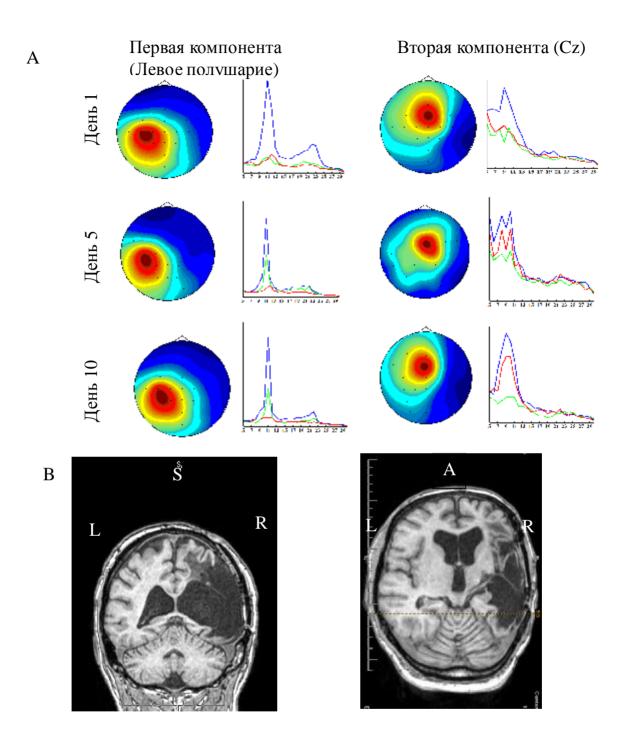


Рис.10. Топографические распределения двух наиболее значимых компонент и спектральные плотности их интенсивности при трех ментальных состояниях у пациента с обширным корково-подкорковым повреждением головного мозга (A) и MPT-изображения головного мозга данного пациента (B).

3. Эффективность методики ИМК в комплексном лечении больных с очаговым поражением головного мозга.

Для оценки клинической эффективности восстановительной терапии у больных с центральным парезом руки был проведен сравнительный анализ восстановления двигательной функции в основной группе (16 пациентов) и группе сравнения (20 пациентов). Следует отметить, что в данное исследование как в основную группу, так и в группу сравнения были включены больные только с плегией или очень грубым парезом кисти с плохим прогнозом на восстановление движений.

У пациентов основной группы после проведенной терапии выявлено статистически значимое улучшение двигательной функции руки (по шкале ARAT). В группе сравнения значимого улучшения нарушенных двигательных функций не наблюдалось. Различие в улучшении функции руки между группами статистически значимо (p=0,024). Результаты оценки двигательной функции руки в динамике у пациентов основной группы и группы сравнения представлены в Таблице 2.

Таблица 2. Результаты оценки двигательной функции руки по шкале ARAT до и после реабилитации.

	До	После	P
Основная группа	1 [0; 4,5]	5 [0;16]	0,012
Группа сравнения	0 [0; 4]	0 [0; 5]	0,480

Для оценки влияния тренинга с применением технологий ИМК на выраженность двигательных нарушений в руке при разной давности инсульта или травмы пациенты каждой группы были разделены на 2 подгруппы в зависимости от давности заболевания (реабилитационного периода): в первую подгруппу были включены больные с давностью инсульта до 6 месяцев, во вторую — свыше 6 месяцев.

Среди пациентов основной группы в раннем реабилитационном периоде находилось 5 человек (1 пациент в дальнейшем выбыл из исследования), в позднем и резидуальном реабилитационном периоде – 11 человек (2 пациента в дальнейшем выбыло из исследования). В группе сравнения: 9 человек в раннем восстановительном, 11 человек в позднем и резидуальном восстановительном периоде.

Результаты оценки двигательной функции руки в динамике в зависимости от реабилитационного периода представлены в Таблице 3. При анализе результатов выявлено статистически значимое улучшение двигательной функции руки у пациентов основной группы, находящихся в раннем восстановительном периоде. Среди пациентов группы сравнения, а также пациентов основной группы в позднем и резидуальном восстановительном периоде статистически значимого улучшения не выявлено.

Вместе с тем, сравнительный анализ результатов выявил большее относительное улучшение двигательной функции руки в основной группе по сравнению с группой сравнения у пациентов всех подгрупп.

Таким образом, проведенное исследование показало, что эффективность восстановительной терапии была выше В группе cвключением реабилитационную программу тренировки воображения движения, контролируемого интерфейсом мозг-компьютер, в особенности у пациентов в раннем восстановительном периоде. Улучшение двигательных функций в кисти (по шкале ARAT) у пациентов основной группы с давностью инсульта меньше 6 месяцев отмечено у 3 (75%) из 4 больных с плегией кисти.

Эффективность серии тренировок воображения движения с использованием ЭЭГ-ИМК ранее не исследовалась в контролируемых исследованиях (с участием группы сравнения). Важно отметить, что в нашем исследовании участвовали пациенты с наиболее выраженными двигательными нарушениями в кисти (плегия или очень грубый парез). Прогноз на восстановление у таких пациентов был неблагоприятен или крайне неблагоприятен. Тем не менее, у 3 из 4 пациентов в раннем восстановительном периоде и у 1 пациентки в позднем восстановительном периоде произошло клинически значимое улучшение двигательной функции кисти,

выражающееся в появлении возможности брать некоторые предметы со стола, открывать дверную ручку.

Таблица 3. Результаты оценки двигательной функции руки по ARAT до и после восстановительной терапии в зависимости от реабилитационного периода.

Период	Ранний реабилитационный			Поздний и резидуальный		
	До	После	p	До	После	р
Группа ИМК	1 [0; 2]	12,5[4,5;18]	0,04	1[0;4]	5 [0;5]	>0,05
Группа	0 [0; 4]	0[0; 4]	>0,05	0[0;6]	0[0; 8]	>0,05

Таким образом, проведенное исследование выявило нейрофизиологические особенности обучения воображению движения при помощи технологии ИМК, основанной на регистрации ЭЭГ, у здоровых испытуемых и больных с очаговым поражением головного мозга и показало эффективность этой технологии при очень грубых двигательных нарушениях.

ВЫВОДЫ

- 1. У 43% здоровых испытуемых, помимо двух значимых и регулярных компонент, при управлении ИМК часто выделяется источник сигнала с локализацией ближе к зоне проекции Сz электрода, в котором при воображении движения происходила неспецифическая для каждой из рук десинхронизация ритма в диапазоне мю и нижнего бета.
- 2. У обученных и необученных здоровых лиц при фМРТ-картировании функции воображения движения определялись зоны активации в полях Бродмана 3 и 6 и мозжечке. Только у обученных испытуемых наблюдалась активация первичной моторной коры, а у необученных ассоциативных зон.

- 3. При проведении нТМС у обученных испытуемых амплитуда ВМО была достоверно выше и порог возбуждения моторной коры снижен в среднем на 17% по сравнению с покоем, что свидетельствует о повышении возбудимости моторной коры в результате обучения воображению движения с применением ИМК.
- 4. У пациентов с очаговым поражением головного мозга и выраженными двигательными нарушениями в кисти независимо от давности заболевания и латерализации очага поражения оказалось возможным освоение технологии ИМК, и достигнутое качество управления интерфейсом достоверно не отличалось от данного показателя у здоровых лиц.
- 5. При подкорковом очаге повреждения головного мозга, локализация и спектральная плотность значимых для управления интерфейсом компонент определялись такие же, как у здоровых. При обширном повреждении двигательной коры значимая компонента в поврежденном полушарии не регистрировалась. Однако, компонента с локализацией в зоне Сz электрода может быть регулярной и значимой для управления ИМК, в данном источнике может наблюдаться специфическая десинхронизация СМР.
- 6. При групповом анализе фМРТ у пациентов с подкорковой локализацией очага повреждения головного мозга, прошедших 5-7 сеансов ИМК-тренинга, так же как и у здоровых операторов ИМК, выявлены зоны активации в первичной моторной, дополнительной и премоторной коре контралатерального полушария.
- 7. Эффективность восстановительной терапии была выше в группе с включением в реабилитационную программу тренировок воображения движения под контролем ИМК, в особенности у пациентов с очень грубыми двигательными нарушениями кисти в раннем восстановительном периоде. Улучшение двигательных функций в кисти (по шкале ARAT) у пациентов основной группы с давностью инсульта меньше 6 месяцев отмечено в 75%.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

На основании результатов проведенного исследования, показавших возможность и эффективность применения основанного на воображении движения интерфейса мозг-компьютер у больных с очаговым поражением головного мозга, можно рекомендовать включение данной технологии в реабилитационную программу пациентов с грубым парезом или плегией кисти.

Технологию, основанную на ИМК-тренинге, можно рекомендовать пациентам даже при обширном корково-подкорковом повреждении головного мозга, но при условии сохранности когнитивной функции

Результаты проведенного исследования могут служить основой для разработки и внедрения в практику ассистирующих интерфейсов для пациентов, прогноз на восстановление двигательной функции у которых неблагоприятный или крайне неблагоприятный.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ:

- 1. Мокиенко О. А., Черникова Л. А., Фролов А. А. Интерфейс мозг-компьютер как новая технология нейрореабилитации. Анналы клинической и экспериментальной неврологии. 2011. 5(3): 46-52.
- 2. Alexander Frolov, Dusan Husek, Pavel Bobrov, Alexey Korshakov, Lyudmila Chernikova, Rodion Konovalov, Olesya Mokienko. Sources of EEG activity the most relevant to performance of brain-computer interface based on motor imagery. Neural Network World. 2012. 22 (1): 21-37
- 3. Мокиенко О.А., Бобров П.Д. Применение технологии интерфейс мозг-компьютер в реабилитации пациентов с гемипарезом. Материалы первой всероссийской научной конференции молодых ученых-медиков "Инновационные технологии в медицине XXI века». Москва, 6-7 декабря 2012 г. М.: РООИ «Здоровье человека», 2012. С.33.
- 4. Мокиенко О. А., Черникова Л. А., Фролов А. А., Бобров П. Д. Воображение движения и его практическое применение. Журнал высшей нервной деятельности им. Павлова. 2013. 63(2): 195-204
- 5. Фролов А.А., Бирюкова Е.В., Бобров П.Д., Мокиенко О.А., Платонов А.К., Пряничников В.Е., Черникова Л.А. Принципы нейрореабилитации, основанные на использовании интерфейса «мозг-компьютер» и биологически адекватного управления экзоскелетоном. Физиология человека. 2013. том 39, № 2, с. 99–113
- 6. Мокиенко О.А., Бобров П.Д., Черникова Л.А., Фролов А.А. с.56. Применение технологии интерфейс мозг-компьютер в реабилитации пациентов с гемипарезом. Материалы VII Всероссийской с международным участием школы-конференции по физиологии мышц и мышечной деятельности «Новые подходы к изучению классических проблем». Москва, 29 января 1 февраля 2013 г. М.: Графика-Сервис, 2013. С. 56.

Заявлен 1 патент на изобретение: Черникова Л. А., Мокиенко О. А., Рощин В. Ю., Бобров П. Д., Фролов А. А. «Способ реабилитации больных, перенесших инсульт» — на стадии проведения экспертизы по существу с 11.04.13. Регистрационный номер 2013116424.

СПИСОК СОКРАЩЕНИЙ

ВМО – вызванные моторные ответы

ИМК – интерфейс мозг-компьютер

нТМС – навигационная транскраниальная магнитная стимуляция

СМР – сенсорно-моторный ритм

фМРТ – функциональная магнитно-резонансная томография

ARAT – Action research arm test (тест оценки функции руки)

APB – m. Abductor pollicis brevis

ECR – m. Extensor carpi radialis

FCU – m. Flexor carpi ulnaris