Borexino Supernova Alarm System 2.0

Maxim Gromov on behalf of the Borexino collaboration

SNEWS 2.0 Workshop 16.06.2019

Borexino Experiment

Laboratori Nazionali del Gran Sasso

Borexino SNEWS history Original design (2009)

Borexino SNEWS history Original design and status

Princeton SN monitor

Based on hardware independent from the Laben and FADC DAQs

- Searching for bursts of neutrons
- Input: analog sum of all ID PMTs
 - Active while the PMTs are on
 - Multiplicity ≥ 6
 - Δt (subsequent pulses) < 10 s
 - Real burst duration ≥ 2 ms
 - Noise cut
 - Working up to now

Online Echidna SN monitor

Online Echidna is a lightweight version of the reconstruction framework

- Searching for bursts of events
 - In 30 s window
 - Multiplicity ≥ **15**
- Energy threshold 500 keV
- Reject muons and neutrons
- Partly tested (offline mode)
 - Not commissioned

Borexino SNEWS history Current status (2019)

Borexino SNEWS 2.0 (2019)

What is expected? One of the possibilities

Common

Database

Standard SNEWS

Low threshold SNEWS

GWNU Online

GWNU Offline

Presupernova neutrino triggers

Adding the burst significance False Alarm Rate

The False Alarm Rate (FAR or the Imitation Frequency)

is a number of accidental background fluctuation above the SN detection threshold per year

The joint FAR is a number of accidental coincidence of detector signals in the network

$$FAR_{joint} = \prod_{i=1}^{N} FAR_i \times (2t_{coin})^{N-1},$$

where t_{coin} is a coincidence window between GW and neutrino signals in which the correlation is looked for **Conservative approach:** $t_{coin} = 10$ s, whereas in some paper it's in order of tens ms [1]. The factor "2" is due to unknown time order of signals.

[1] G. Pagliaroli et al., Phys.Rev.Lett.103:031102,2009; arXiv:0903.1191v1

FAR: a powerful parameter for accidental background rejection

Let's choose the joint FAR of 1 cluster/1000 yr and the GW subnetwork FAR of 1 cl/1 month

$$\mathit{FAR}_{joint} = rac{1\, ext{CL}}{1000\, ext{YR}} = = FAR_{GW} imes \mathit{FAR}_{LVD} imes \mathit{FAR}_{lceCube} imes \mathit{FAR}_{BX} imes (2t_{coin})^3$$

Assuming the same FAR per each neutrino detector:

$$\mathit{FAR}_{
u}\sim 2 imes 10^{-3}\,\mathrm{Hz}\sim rac{1\,\mathrm{CL}}{10\,\mathrm{min}}$$

If there is only one detector it's necessary to stay at very low value of FAR_i in order to be statistically significant The value equals 1 cl/100 yr in the LVD paper [2]

[2] Agafonova N Y et al. (LVD Collaboration) 2015 ApJ 802 47 (Preprint 1411.1709v2)

Parameters of v bursts selection

In case of counting detectors like Borexino, LVD, KamLAND, JUNO

Type of the event bursts:	a) burst consisting of single events b) burst of the IBD events
Type of the burst window:	a) fixed (static) time window
	b) fixed time windows with shifts
	(duration - 20 s, start shift - 10 s)
	c) dynamic (every event is a starting point)
Multiplicity:	a) based on the signal/background ratio
	b) based on the significance (FAR)

Well-developed approaches:

[2] Agafonova N Y et al. (LVD Collaboration) 2015 ApJ 802 47 (Preprint 1411.1709v2)
[3] Agafonova N Y et al. (LVD Collaboration) 2008 Astropart. Phys. 28 516–22 (Preprint 0710.0259v1)

BX SNEWS: v event bursts selection

According to the LVD article [3]

the technique implies for JUNO-like detectors:

- **>** the search for a burst of events within a fixed-duration time window $\Delta t = 20 \text{ s}$
- \succ each burst is characterized by duration Δt and multiplicity m_i
- > each data period T is divided into $N = 2 T/\Delta t 1$ intervals, each one starting in the middle of the previous one
- > as a result the unbiased time window is 10 s
- calculation of average background f_{bk} for each period of measurements under constant conditions (trigger levels, purity,...)
 Note: Every v - candidate is considered as a background event
- each burst is associated with FAR which is based on the Poisson distribution:

$$FAR(m, f_{\mathbf{bk}}, 20 \, \mathbf{s}) = 8640 \cdot \sum_{k \ge m}^{\infty} P\left(k; 20 \cdot \frac{f_{\mathbf{bk}}}{s^{-1}}\right) \frac{ev}{day}$$

[3] Agafonova N Y et al. (LVD Collaboration) 2008 Astropart. Phys. 28 516–22 (Preprint 0710.0259v1)

BX SNEWS: v event bursts selection

Simulation

Goals:

- Verification techniques and tools
- The efficiency of the coincidence search depending on the distance to the supernova and the number of detectors in the network
- **How?** By inserting the generated signals into real data

SN models (penalty: model-dependent efficiency):

- Pagliaroli's approach: reproduce SN1987A signal, taking the main parameters from the analysis Astroparticle Physics 31 (2009) 163–176; arXiv:0810.0466v1
- 2) Lawrence Livermore model (characteristics similar to SN1987A) Astrophys. J. 496 (1998) 216-225; arXiv:astro-ph/9710203v1
- 3) One of the most conservative assumptions producing the lowest flux Phys. Rev. Lett. 104: 251101, 2010; arXiv:0912.0260v3
- 4) "Optimistic assumption": lots of neutrinos with rising energy Astrophys.J.667:382-394,2007; arXiv:0706.3762v1

Possible data format

Two types of data lists for each detector

The first type: for the coincidence search itself

<u>GPS</u> time of the burst start, seconds, precision 1 s	FAR, events/day
562392268	2199.78
562392288	652.72
562392308	5377.14
•••	•••

Possible data format

Two types of data lists for each detector

 The second type: for further investigation in case of LVD, Borexino, KamLAND, JUNO

multiplicity	FAR, events/day	<u>GPS</u> start time, seconds	<u>GPS</u> start time, nanoseconds	duration, seconds (20 s)	Real duration, seconds	Parameter ξ, events/second	mean energy, MeV	after muon event	energy, MeV	time, us
3	652.71	562389708	226221964	20.000	18.436148	0.16	1.49	0	0.94	504194.836
								1	1.17	14113123.037
_								1	2.26	14563833.635
S	ee also	o the GW	NU poste	er				0	1.59	18940342.891

Conclusions and proposals

 Borexino SN Alarm System 2.0 is in progress
 The new design is quite flexible and independent from the design of the SNEWS server
 Looking for manpower for simulations

<u>Next milestones:</u>

> SNEWS 2.0:

general framework and network uniting various experiments

SNEWS 2.0 and/or GWNU MoU

The low threshold analysis and sky localization

Thank you for your attention!

SNEWS and GWNU

Current NU experiments			GW experiments:				
	in SNEWS:						
	LVD						
	IceCube			LIGO			
	KamLAND	GVVI	NU	VIRGO			
	Borexino						
	Super-K						
	Daya Bay						
	HALO						

Other experiments in GWNU: NOvA JUNO

Perspective experiments in GWNU:KM3NETXENON1TMicroBooNE

Detection efficiency study (simplified) By Claudio Casentini and Giulia Pagliaroli

Simulation of background for Borexino, KamLAND and LVD; staticsics – 1 month Simulation and injection 50 signals per distance using the Pagliaroli model [4] Energy thresholds: Borexino, KamLAND – 1 MeV, LVD – 10 MeV

Detection channel: IBD

After clusterization three cases were considred: 1, 2 and 3 detectors in the neutrino network with the Joint False Alarm Rate R_{Joint} at 1 ev/day:

a) Network of one detector: R = 1 ev/day

b) Network of two detectors: R = 66 ev/day

c) Network of three detectors: R = 265 ev/day

Burst selection according to the required FAR

Simplified mode: no coincidence search was made

For each distance the average efficiency of any detector in the network:

 $<\eta>=rac{1}{10000}\sum_{i=1}^{10000}rac{the number of recovered signals(i)}{the number of injected signals(i)}$

[4] G. Pagliaroli et al., Astroparticle Physics 31 (2009) 163–176; arXiv:0810.0466v1

Borexino efficiency By Claudio Casentini and Giulia Pagliaroli

LVD efficiency By Claudio Casentini and Giulia Pagliaroli

KamLAND efficiency By Claudio Casentini and Giulia Pagliaroli

