Effect of the Oxidation State of Pb on the Superconducting Transition Temperature of $Bi_{2-x}Pb_xSr_2CaCu_2O_{8+\delta}$

I. B. Bobylev, E. I. Patrakov, L. N. Kuz'minykh, N. A. Zyuzeva, and E. P. Romanov

Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Yekaterinburg, 620219 Russia e-mail: bib@mail.ur.ru

Received April 17, 2002; in final form, February 5, 2003

Abstract—A procedure is developed for determining the Pb⁴⁺ concentration in Pb-substituted Bi-based 2212 superconductors. The effect of the Pb⁴⁺ : Pb²⁺ ratio on the superconducting transition temperature of 2212 is studied. The results indicate that the highest T_c is offered by Bi_{1.8}Pb_{0.2}Sr₂CaCu₂O_{8 + δ} containing the smallest amounts of Pb and Cu in their higher oxidation states.

INTRODUCTION

Partial Pb substitution on the Bi site in $Bi_2Sr_2CaCu_2O_{8+\delta}$ (2212) markedly increases the critical parameters of this superconductor and, in addition, changes its oxygen stoichiometry [1–3]. An important point is that Pb has a variable valence, which adds complexity to the effects of composition and heat-treatment conditions on the properties of 2212.

As shown previously [3], there is an optimal Pb content ($x \approx 0.2$) which maximizes the superconducting transition temperature T_c and critical current density of 2212. This finding can be interpreted as indicating that the properties of Pb-substituted 2212 depend on the Pb⁴⁺ : Pb²⁺ ratio. To address this issue, the concentrations of Bi and Pb in their higher oxidation states must be determined separately. However, given that the redox potentials of Bi and Pb differ little, such determination presents inherent difficulties [3, 4].

The objective of this work was to develop a procedure for determining the Pb⁴⁺ concentration in the presence of Bi⁵⁺ and to analyze the effect of the Pb⁴⁺ : Pb²⁺ ratio on the T_c of Pb-substituted 2212.

EXPERIMENTAL

Ceramic samples for this investigation were prepared by melting appropriate starting mixtures, followed by liquid quenching and ceramming [5]. As in an earlier study [3], the mixtures contained K_2CO_3 in order to accelerate the formation of 2212.

 $T_{\rm c}$ was measured by a standard four-probe technique with an accuracy of 0.5 K, at a transport current of 5 mA.

The procedure for determining the Pb⁴⁺ concentration in Bi-Pb-Sr-Ca-Cu-O superconductors takes advantage of the ability of Pb⁴⁺ to form stable, soluble acetates, in contrast to Cu³⁺ and Bi⁵⁺. Upon dissolution of a Bi-based superconductor sample in warm glacial acetic acid, Cu³⁺ and Bi⁵⁺ convert to Cu²⁺ and Bi³⁺, leading to oxygen release, while Pb⁴⁺ forms a tetraacetate soluble in acetic acid. The amount of the tetraacetate can be determined by the standard permanganate or dichromate method.

In our analyses, an about 0.3-g fine-particle 2212 sample (expected amount of Pb⁴⁺, from 0.01 to 0.05 g) was placed in a dry 100-ml flask and then, after adding glacial acetic acid (5 ml), dissolved in it on a cooling water bath. After cooling to room temperature, the resultant solution, if containing a precipitate, was passed through a dry glass filter and collected in a titrating flask containing 50 ml of water and 10 ml of an $Fe(ClO_4)_2$ solution (2 M in HClO₄). Next, the flask and glass filter were washed twice with 2.5 ml of glacial acetic acid. The solution thus obtained was titrated by a $KMnO_4$ solution (or $K_2Cr_2O_7$ with phenylanthranilic acid as the indicator). Before titration, concentrated H_3PO_4 (0.5 ml) was added to bind the Fe³⁺ ion. As a blank solution, we used a mixture of a Fe(ClO₄)₂ solution (10 ml), glacial acetic acid (10 ml), and water (50 ml). The table presents the titration results for Pb_3O_4 and two 2212 compositions differing in Pb content.

The total Pb content was determined by a standard titration procedure. The relative uncertainty in Pb⁴⁺ concentration was $\pm 3\%$. The Bi⁵⁺ + Pb⁴⁺ and Cu³⁺ concentrations were determined as described previously [3].

RESULTS AND DISCUSSION

We studied $\text{Bi}_{2-x}\text{Pb}_x\text{Sr}_2\text{CaCu}_2O_{8+\delta}$ samples with x = 0.1-0.5, which were quenched from the synthesis

temperature (840°C). Chemical analysis data (Fig. 1) demonstrate that, with increasing Pb content, the amount of Pb⁴⁺ rises, while the Pb⁴⁺ : Pb_{total} percentage ratio decreases from \approx 75 to \approx 60%. In contrast to Bi and Cu, most of the Pb is in its higher oxidation state. This finding agrees well with the conclusion drawn by Sequeira *et al.* [6] based on neutron diffraction data that the Pb substituted on the Bi site is in the oxidation state 4+.

Figure 2 shows the Bi⁵⁺ + Pb⁴⁺ and Cu³⁺ concentrations as functions of Pb content. At low degrees of substitution ($x \le 0.2$), the Bi⁵⁺ + Pb⁴⁺ concentration increases slightly with *x*, while the Cu³⁺ concentration drops to zero, presumably, because the equilibrium

$$Pb^{2+} + 2Cu^{3+} \Longrightarrow Pb^{4+} + 2Cu^{2+}$$

shifts to the right. As *x* increases further, the Pb⁴⁺ concentration rises substantially, and Cu³⁺ appears again because the above equilibrium shifts to the left. In an earlier study [3], Pb-substituted 2212 samples with x = 0.2, containing no Cu³⁺, were also found to offer the highest T_c , the smallest transition width, and the largest superconducting volume. Together with the ordering of cations [2], primarily in the Sr, Ca, and Bi sites, upon Pb²⁺ incorporation into the Sr and Ca sublattices, the absence of Cu³⁺ must have a positive effect on superconducting properties, because Cu³⁺ gives rise to lattice distortions in both undoped 2212 and Pb-substituted materials with x > 0.2.

As shown earlier [3, 7], heat treatment has a strong effect on the critical parameters of Pb-substituted 2212. Critical roles are played by both the annealing temperature and atmosphere. In particular, the highest $T_c(R = 0)$ of 96 K was achieved by heat-treating Bi_{1.8}Pb_{0.2}Sr₂CaCu₂O_{8+δ} at 700°C and an oxygen partial pressure of ~10³ Pa. The effect of heat-treatment conditions on T_c is illustrated in Fig. 3 (the annealing duration was 10 h). The nonmonotonic behavior of T_c around 400°C is associated with the metastable state of the samples [3] (longer term annealing leads to a gradual decrease in T_c).

Figure 4 displays the Pb⁴⁺ : Pb_{total} data for the samples heat-treated at temperatures in the range 400–700°C in an oxygen atmosphere ($p_{O_2} \sim 10^5$ Pa), air ($p_{O_2} \sim 10^4$ Pa), and argon ($p_{O_2} \sim 10^3$ Pa). With increasing heat-treatment temperature and decreasing p_{O_2} , the Pb⁴⁺ concentration decreases, as would be expected. The data in Figs. 3 and 4 are strongly correlated: the highest T_c ($t = 700^{\circ}$ C, $p_{O_2} \sim 10^3$ Pa) corresponds to the smallest relative Pb⁴⁺ concentration (Pb⁴⁺ : Pb_{total} \approx 50%). This finding is in line with the assumption [2] that Pb substitution leads to a better compositional

Fig. 1. (1) Weight percent of Pb^{4+} and (2) Pb^{4+} : Pb_{total} percentage ratio as functions of Pb content.

Fig. 2. Weight percent of (1) $Bi^{5+} + Pb^{4+}$ and (2) Cu^{3+} as functions of Pb content.

order, since this is only possible if Pb is in the oxidation state 2+ and substitutes for Bi on Sr and Ca sites, which produces stronger lattice distortions.

Titration results for Pb₃O₄ and 2212 solutions

Sample no.	wt % Pb ⁴⁺	Sample no.	wt % Pb ⁴⁺
Pb ₃ O ₄		Bi _{1.5} Pb _{0.5} Sr ₂ CaCu ₂ O _y	
1	30.21	1	8.84
2	29.97	2	8.91
3	30.83	3	8.92
4	30.09	Bi _{1.8} Pb _{0.2} Sr ₂ CaCu ₂ O _y	
5	30.12	1	2.93
6	30.15	2	2.94
Average	30.15	3	2.94
Nominal	30.22		

Fig. 3. T_c of Bi_{1.8}Pb_{0.2}Sr₂CaCu₂O_{8 + δ} as a function of annealing temperature at oxygen partial pressures $p_{O_2} \sim (1) \ 10^5$, (2) 10⁴, and (3) 10³ Pa; annealing duration of 10 h.

Fig. 4. Pb_{total}^{4+} : Pb_{total} percentage ratio as a function of annealing temperature for $Bi_{1.8}Pb_{0.2}Sr_2CaCu_2O_{8+\delta}$ annealed at different oxygen partial pressures; (*1*–3) same as in Fig. 3.

In addition, Pb²⁺ produces oxygen vacancies necessary for the ordering of excess oxygen, which improves the homogeneity and stabilizes the structure of 2212 [3, 8, 9]. This is supported by the fact that the oxygen content of the material heat-treated at 700°C and $p_{O_2} \sim$ 10^3 Pa (y = 8.03) is close to the stoichiometric value [3]. As a result, the structural modulation disappears and the defect density decreases [10, 11], since excess oxygen resides in regular sites, instead of being incorporated in Bi layers, where it displaces Bi atoms and distorts the coordination polyhedra of Cu [12]. At the same time, the hole concentration in the system ($\delta = 0.13$ [3]) remains sufficient for the superconducting transition to occur at a relatively high temperature.

CONCLUSIONS

With increasing heat-treatment temperature and decreasing oxygen partial pressure, the Pb⁴⁺ content in

the Bi–Pb–Sr–Ca–Cu–O system decreases. The highest T_c is offered by the Bi_{1.8}Pb_{0.2}Sr₂CaCu₂O_{8+δ} material heat-treated at 700°C and $p_{O_2} \sim 10^3$ Pa, which contains the smallest amounts of Pb and Cu in their higher oxidation states. Both factors improve the structural perfection of the 2212 superconductor.

REFERENCES

- Lina Ben-Dor, Szerer, M.Y., Blumberg, G., *et al.*, Physical Characterization and Vibrational Spectroscopy of Bi(Pb) Cuprate 2212 Ceramics Prepared by Sol–Gel, *Physica C* (Amsterdam), 1992, vol. 200, no. 3/4, pp. 418–424.
- Bobylev, I.B., Morycheva, V.N., Lyubimov, M.G., *et al.*, Effect of Lead and Alkali Metals on the Properties of Bi₂Sr₂CaCu₂O₈, *Sverkhprovodimost: Fiz., Khim., Tekh.*, 1992, vol. 5, no. 11, pp. 2056–2063.
- Bobylev, I.B., Zyuzeva, N.A., Deryagina, I.L., *et al.*, Oxygen Stoichiometry and Properties of Pb-Substituted Bi₂Sr₂CaCu₂O_{8 + δ}, *Neorg. Mater.*, 2000, vol. 36, no. 11, pp. 1362–1368 [*Inorg. Mater.* (Engl. Transl.), vol. 36, no. 11, pp. 1145–1150].
- Lur'e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1989.
- Bobylev, I.B., Romanov, E.P., Lyubimov, M.G., *et al.*, Fabrication of Dense Bi₂Sr₂CaCu₂O₈ Glass-Ceramics with T_c > 90 K, *Sverkhprovodimost: Fiz., Khim., Tekh.*, 1991, vol. 4, no. 7, pp. 1335–1343.
- Sequeira, A., Rajagopal, H., Sastry, P.V.P.S.S., *et al.*, A Neutron Diffraction Study of the Structure of Bi_{1.6}Pb_{0.4}Sr₂CaCu₂O_y, *Physica C* (Amsterdam), 1991, vol. 173, no. 3/4, pp. 267–273.
- Bobylev, I.B., Morycheva, V.N., Kuz'minykh, L.N., et al., Effect of Oxygen Stoichiometry on the Critical Parameters of Bi₂Sr₂CaCu₂O_{8+δ}, Sverkhprovodimost: Fiz., Khim., Tekh., 1995, vol. 8, no. 1, pp. 100–111.
- Chuanbin Mao, Lian Zhou, Xiaozu Wu, *et al.*, Rapid One-Powder Process to Synthesize Phase Assemblage Composed of (Bi,Pb)Sr₂CaCu₂O_x, Ca₂CuO₃, and CuO, *Physica C* (Amsterdam), 1998, vol. 303, no. 1/2, pp. 28–32.
- Renschler, T., Kemmler-Saek, S., Kessler, P., *et al.*, Superconducting Properties of Pb-Free and Pb-Substituted Bulk Ceramics of Bi-2212 Cuprates, *Physica C* (Amsterdam), 1994, vol. 219, no. 1, pp. 167–171.
- Kambe, S., Okuyama, K., Ohshima, S., *et al.*, Origin of Modulated Structure for High-T_c Bi2212 Superconductor, *Physica C* (Amsterdam), 1995, vol. 250, no. 1/2, pp. 50–54.
- Chen, C.H., Werder, D.J., Espinosa, G.P., et al., Incommensurate Superlattices in the Pb-Substituted Bi–Sr–Ca–Cu–O Superconductors, *Phys. Rev. B: Condens. Matter*, 1989, vol. 39, no. 7, pp. 4686–4689.
- 12. Eibl, O., Structure of $(Bi,Pb)_2Sr_2Ca_{n-1}Cu_nO_{4+2n+\delta}$ High- T_c Superconductors, *Physica C* (Amsterdam), 1990, vol. 168, no. 1/2, pp. 215–238.

INORGANIC MATERIALS Vol. 39 No. 7 2003