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1. INTRODUCTION

Infrasonic signals from more than a million differ�
ent events (explosions, fires, bolides, storms in the
ocean, volcanic eruptions, tsunami, thunderstorms,
other meteorological sources, etc.) have been
recorded at the international monitoring network [1].

Figure 1 shows an infrasonic signal recorded at a
distance of 304 km from a surface explosion equivalent
to 20–70 t of TNT [2]. Figure 2 shows an infrasonic
signal recorded at a distance of 980 km from the place
of an equivalent explosion. It follows from Figs. 1 and
2 that the recorded signals significantly differ in form.
In Fig. 1, the waveform corresponds to a classical
infrasonic signal at a distance of one cycle of ray paths
from its source. This signal is characterized by the
presence of several types of infrasonic arrivals (surface,
stratospheric, mesospheric, and thermospheric)
which significantly differ in amplitude and waveform.
Such signals are not characteristic of any other infra�
sonic sources (fires, bolides, storms in the ocean, vol�
canic eruptions, tsunami, thunderstorms, other mete�
orological sources, etc.). Therefore, identifying a sig�
nal such as that corresponding to a pulsed source
presents no difficulty. The situation is quite different in
identifying signals recorded at a distance of a few
cycles of ray paths from an explosion (see Fig. 2). Such
signals are oscillating and very long in time. Some
arrivals can be pronounced in their waveforms (this is
easily seen in Fig. 2). However, it is impossible to visu�
ally identify these arrivals as those corresponding to a
pulsed source, because similar waveforms are also

observed in infrasonic signals from storm waves in the
ocean (microbaroms), auroras, mountain waves, etc.
(see below).

Therefore, it is necessary to develop special methods
to classify different types of infrasonic signals. The pro�
posed approach of such a classification is based on the
methods of testing statistical hypotheses [4].

The SigLib data archive, which includes infrasonic
signals recorded in the United States (University of
Alaska, Fairbanks) and in the Antarctic region (Windless
Bight) from 1980 to 1983 [5], was used in this work.

At the University of Alaska, a team of specialists
studying infrasonic signals analyzed library data [5].
They singled out 172 signals from natural and anthro�
pogenic sources.

All the signals from the data archive [5] were
divided into five classes: signals from explosions (class 1,
Explosion Test), mountain associated waves (class 2,
MAW), microbaroms (class 3, Microbarom), volcanic
infrasound (class 4, VOL), and auroral infrasonic
waves (class 5, AIW). The signals were recorded with a
few (3–4) sensors located at some distance from one
another, which made it possible to record one and the
same signal in a few channels and, thus, single out a
useful signal against the background of noise.

Figure 3 shows the wave forms that are characteris�
tic of each of the classes of infrasonic signals.

The characteristic features of signals should be
found for each of the classes, and a method of classify�
ing signals should be proposed.
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Fig. 2. Infrasonic signal recorded at a distance of 980 km from the place of a surface explosion equivalent to 20–70 t of TNT [2].
Seconds are plotted on the abscissa. 

In this work, the possibilities for signal classifica�
tion are studied on the basis of an analysis of their form
[6, 7]. In the methods of a morphological analysis, the
form of signal implies information that is general for
the elements of a given class and independent of the
recording conditions. In this case, the coefficient of
signal enhancement is considered unknown; there�
fore, the methods of analyzing the form of signal must
be invariant under variations in its amplitude. The fea�
tures of signal forms that are characteristic of time
intervals of 5 to 10 min and reflected in the correla�
tions of signal values are analyzed in this work. The

separability of signals belonging to each of the classes
from all the rest of the signals is studied. It is shown
that it is possible to distinguish between signals from
bomb explosions and volcanic infrasound and those
from the rest of sources.

2. A MATHEMATICAL MODEL OF SIGNALS 
BELONGING TO EACH OF THE CLASSES

The signals under study were recorded at suffi�
ciently long distances from their sources and their
duration was 5–10 min. Therefore, the whole signal
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Fig. 1. Infrasonic signal recorded at a distance of 304 km from the place of a surface explosion equivalent to 20–70 t of TNT [2].
L denotes a surface infrasonic arrival; Psm denotes stratomesospheric infrasonic arrivals; Im denotes a mesospheric infrasonic
arrival; and It denotes a thermospheric infrasonic arrival.
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was divided into fragments containing n = 600 read�
ings in the same manner as was done in the “caterpil�
lar” method [8]; i.e., the first fragment started with the
first reading of the signal and ended with reading n, the
second fragment started with the second reading of
signal and ended with reading n + 1, etc. (Fig. 4). All
these fragments were treated as the random�vector
realizations ξ = (ξ1, …, ξn) with the dimensionality n.

Based on the requirement for invariance under
variations in the coefficient of signal enhancement,
the normalization was performed by dividing each
coordinate of vector by its norm.

It was assumed that the correlation properties of
normalized vectors are the same inside each of the
classes, but they differ from class to class.

The results of an analysis of these signals showed
that their mathematical expectations calculated as an
arithmetic mean of the coordinates of each signal’s

vector  are close to zero, and the

matrices of covariations are close to the Toeplitz
matrices (i.e., their matrix elements along each diago�
nal are constant). This suggests that the random vec�
tors of a given class can be treated as the realizations of
stationary random processes. The covariation matrices
are shown in Figs. 5a and 5b by the example of signals
belonging to different classes (Explosion Test and
AIW).

Then, it was assumed that each of the five signal
classes is a set of random vectors with zero mathemat�
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ical expectation and specified correlation matrices;
sample covariance matrices were used in the classifica�
tion algorithm.

3. STATEMENT OF THE PROBLEM
OF CLASSIFICATION

Now, let us consider the problem of dividing vec�
tors into two classes. It is assumed that the elements of
each class are random vectors from the Euclidean
space Rn with the zero mathematical expectation and
the correlation matrices V (for the first class) and W
(for the second class).

To solve this problem, we use an approach based on
the classical theory of solving problems of testing sta�
tistical hypotheses [4]. The assumption that the corre�
lation matrix of the vector produced is V is called a
hypothesis, and the assumption that the correlation
matrix is W (W ≠ V) is called an alternative.

In order to solve the problem of classification, we
divide the space Rn into two regions S and its comple�

ment  If the realization of a random vector falls
within the region S, it belongs to the first class, which
corresponds to the accepted hypothesis; otherwise, it
belongs to the second class. Let us explain from what
considerations we plot the acceptance region S.

Let us assume that the hypothesis is true. We con�
sider the Karhunen–Loéve basis {ej, j = 1, …, n} com�
posed of the eigenvectors of the matrix V and corre�
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Fig. 3. Signals characteristic of each of the five classes.
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2

100

400
200

300
400

500
600

500 600

300200100

1

0

–1

–2

Covariation matrix of Class 1: Explosions

×10–3

2

100

400
200

300
400

500
600

500 600

300200100

1

0

–1

–2

Covariation matrix of Class 5: Auroral infrasonic waves

×10–3

Fig. 5. Portions of signals from (a) explosions and (b) auroral infrasonic waves which are chosen to array the covariation matrices
using the caterpillar method.

sponding to the eigenvalues of  j = 1, …, n that are

ordered so that  ≥  ≥ … ≥ ; then, the random
vector ξ ∈ Rn with the zero mathematical expectation
and the covariance matrix V are written in the form

ξ =  where the expansion coefficients αj are

the uncorrelated random quantities with the zero
mathematical expectation and the variance equal to

 j = 1, …, n [7]. After a transformation with the aid

2,jσ

2
1σ

2
2σ

2
nσ

1
,

n

j jj=
α∑ e

2,jσ

of the matrix V–1/2, we obtain the vector V–1/2ξ =

 whose expansion coefficients have a unit

variance, and its squared norm t(ξ) =  ≡

 has a mathematical expectation equal to the

dimensionality n of the space Rn. Then, on the basis of
the Chebyshev inequality, for any ε > 0, one can write
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(1)

This relationship is used to characterize the agree�
ment between the realization x of the random vector
ξ ∈ Rn and the hypothesis. Substituting ε = t(x) in (1),

we obtain P(t(ξ) ≥ t(x)) ≤  which can be inter�

preted in the following way: the higher the value of t(x)
obtained for the realization x is, the lower the proba�
bility is that the value of t(ξ) exceeding that of t(x) will
appear if the hypothesis is true. The value of αV(x) =

 is the upper boundary of the probability of obtain�

ing the ξ realization that is in no better agreement
(than x) with the hypothesis. The random quantity
αV(x) is called the hypothesis reliability and is used as
a characteristic of agreement between the x realization
and the hypothesis [7].

Similar reasonings show that an agreement
between the x realization of the random vector ξ ∈ Rn

and the alternative is due to αW(x) = 

When classifying the vector ξ, it would be natural to
consider that the hypothesis is true; i.e., the correla�
tion matrix of vector ξ corresponds to V if, at the x
realization of the vector ξ, its reliability αV(x) is not
less than the reliability αW(x) of the alternative. In
view of the fact that the errors of both the first and sec�
ond kinds result in different losses, we consider that
the vector ξ (according to the x realization) belongs to
the hypothesis if αV(x) – αW(x) ≥ c, where the thresh�
old value is the problem parameter regulating the rela�
tion between the errors of the first and second kinds.
After the corresponding transformations, the region S
of the accepted hypothesis is determined by the fol�
lowing relation:

(2)

4. EMPIRICAL CONSTRUCTION 
OF THE MODEL OF SIGNAL CLASSES

In this problem, the sample covariation matrices
arrayed according to a sample obtained from the
archive with the caterpillar method were used for clas�
sification; in this case, signals from all sensors were
used. The mathematical expectations of random vec�
tors were assumed to be zero, and the sample vectors
were normalized.

One of the five signal classes under analysis was
chosen, and the sample covariation matrix V was
arrayed on the basis of the obtained sample of vectors
belonging to this class.

If the archive contains L signals of a chosen class,
each signal was recorded with k sensors and the num�
ber of counts is N; then, as a result, the number of
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sample vectors is (N – n)kL. Figure 4 shows the char�
acteristic graphs divisible by the period of signal frag�
ments (by the example of explosions and auroras).

The vectors similarly obtained from the archive for
the other four classes were treated as sample values of
a random vector distributed according to the alterna�
tive, and the sample covariance matrix W was arrayed
on their basis.

5. TESTING SIGNAL SEPARABILITY 
AND DETERMINING CRITICAL LEVELS

The signal separability was tested in the following
way:

(1) The value of criterion (2) was calculated for
each pair of classes. If х belongs to S, then it is consid�
ered to correspond to the first�class signal. If х does
not belong to S, then it corresponds to the second�
class signal.

(2) For each x of the first class,  –  =
s1(x) was calculated. For each х of the second class,

 –  = s2(x) was calculated.

(3) For different с
α
, the values of the function di(с

α
)

(the number of the x vectors of the ith class, for which
si(x) is smaller than or equal to с

α
) were calculated.

(4) The probability of the correct solution (i.e., the
correctness of the accepted hypothesis) Р1(с

α
) =

d1(с
α
)/N1 (N1 is the number of the first�class vectors)

was estimated, as was the probability of a wrong deci�
sion (the incorrectness of the accepted alternative)
Р2(с

α
) = d2(с

α
)/N2 (N2 is the number of second�class

vectors).

(5) The values of the с
α
 thresholds were determined

using the obtained graphs.

The с
α
 thresholds were determined for the follow�

ing two cases: for division into five classes and for divi�
sion into two sets. The first set included signals of the
first (explosions) and fourth (volcanic infrasound)
classes, and the second set included signals of the second
(mountain associated waves), third (microbaroms), and
fifth (auroral infrasonic waves) classes.

The Р1(с
α
) and Р2(с

α
) graphs obtained for the case

of division into two sets are given in Fig. 6. The с
α
 level

is chosen to be 1500.

For some sensors, the readings of signals (from the
archive) had insufficient separability. The sample vec�
tors including the readings of such sensors were not
taken into account in constructing the empirical mod�
els of classes.

6. THE RESULTS OF SIGNAL 
CLASSIFICATION

At the thresholds chosen, signals were finally clas�
sified according to the following algorithm:

1( , )x V x− 1( , )x W x−

1( , )x V x− 1( , )x W x−
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(1) A fixed signal was chosen from the archive, and
(N – n)kl sample vectors were plotted using the cater�
pillar method for this signal.

(2) Each of the sample vectors was classified on the
basis of criterion (2) with some chosen threshold of с

α
.

Five criteria (each with its threshold) were used in
dividing signals into five classes. One criterion was
used in dividing signals into two sets.

(3) The number of sample vectors belonging to
each of the classes was calculated.

(4) When dividing signals into five classes, it was
assumed that the signal can reliably be referred to the

class with number k0 if the sum of signal fragments
belonging to this class exceeds 20000 for the first,
third, and fifth classes, 10000 for the second class, and
30000 for the fourth class. When classifying into two
sets, the given quantity divided by the number of class
vectors was bound to exceed 0.8.

All in all, 57 signals were analyzed:
(i) one signal from the class of explosions (recorded

in three channels);
(ii) 15 signals from the class of mountain associated

waves (each of these signals was recorded in four chan�
nels);

(iii) 15 signals from the class of microbaroms (each
of these signals was recorded in four channels);

(iv) 5 signals from the class of volcanic infrasound
(each of these signals was recorded in four channels);

(v) 21 signal from the class of auroral infrasonic waves
(each of these signals was recorded in four channels).

Analyzing the results of dividing signals into five
classes, one can conclude that the proposed algorithm
rather clearly separates the signals belonging to the
first and fourth classes (set no. 1) from those belonging
to the second, third, and fifth classes (set no. 2).

In fact, all signals of the first and fourth classes are
correctly classified; however, 13 (of 51) signals belong�
ing to the second, third, and fifth classes were also
erroneously referred to the first and fourth classes.

The results of classifying signals into two sets are
given in the histogram shown in Fig. 7. The sample
matrix V based on the fragments of signals belonging to
the first and fourth classes and the sample matrix W
based on the fragments of signals belonging to the sec�
ond, third, and fifth classes were used in the classifica�
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tion algorithm. The abscissa is the classes of signals;
the shades of gray correspond to the sets of signals. The
height of the columns is proportional to the portion of
signal fragments that satisfy condition (2) (i.e., the
number of fragments (for which (2) is fulfilled) related
to the total number of fragments in the signal). If the
column height exceeded 0.8, the signal was considered
to belong to set 1 (classes 1 and 4); otherwise, the sig�
nal was considered to belong to set 2 (classes 2, 3, and
5). Analyzing the graph, one can conclude that all sig�
nals from the first set were quite correctly classified.
Only three signals from the second set were errone�
ously referred to the first set. The results suggest that
the quality of the classification algorithm is good.

7. CONCLUSIONS

An approach related to the theory of statistical test�
ing hypotheses was used to solve the classification
problem [4]. An empirical class model was con�
structed using the caterpillar method; in this case, the
signal was divided into fragments of the same duration
(600 readings) [8].

At the first stage, a set of signal fragments 600 read�
ings in length was studied, the possibilities of separat�
ing signal classes were determined, signal fragments
were tested for their self�descriptiveness, and the levels
of accepted hypotheses were determined according to
informative signal fragments.

At the second stage, on the whole, signals were
classified according to the chosen thresholds of classi�
fying signal fragments.

As a result, a rather well distinction was found
between the two sets of signals. The first set included
the signals of the first (explosions) and fourth (volca�
nic infrasound) classes; the second set included the
signals of the second (mountain associated waves)
third (microbaroms), and fifth (auroral infrasonic
waves) classes.

For the control sample, when referring signals to
these two sets, all signals from the first set (explosions
and volcanic infrasound) were correctly classified. As

for the second set (microbaroms, mountain associated
waves, and auroral infrasonic waves), 3 out of 51 sig�
nals were erroneously referred to signals of the first set.
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