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A pair (T, S), where T is a set and S is an non-empty family of subsets T
(an ensemble on T ) is called a descriptive space.
A multiplicative ensemble containing T and ∅ is called a foundation, a
countably additive foundation is called a σ-foundation.
A topological space (T,G) is a descriptive space with a completely additive
foundation G.
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F (T ) denotes the family of all real-valued functions on T .
Fb(T ) is its subfamily of all bounded functions.
f−1

[

X
]

denotes the preimage of the set X ⊂ R with respect to f ∈ F (T ).
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A function f ∈ F (T ) is called measurable on a descriptive space (T, S) if
f−1

[

]x, y[
]

∈ S for every open interval ]x, y[⊂ R.
The family of all such functions is denoted by M(T, S).
Mb(T, S) ≡ M(T, S) ∩ Fb(T ).
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closed with respect to division on non-vanishing functions [by functions
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The Lebesgue –Borel theorem. Let S be a σ-foundation on T . Then
M(T, S) and Mb(T, S) contain 1 : T → {1} and are closed with respect to
addition, multiplication by real numbers, finite suprema and infima,
multiplication, and uniform convergence. Moreover, M(T, S) [Mb(T, S)] is
closed with respect to division on non-vanishing functions [by functions
separated from zero by a constant, respectively ].

Any family A(T ) ⊂ F (T ) [A(T ) ⊂ Fb(T )] possessing all properties of
M(T, S) [Mb(T, S)] from the Lebesgue –Borel theorem is called normal
[boundedly normal, respectively].

The Lebesgue –Borel –Hausdorff theorem. A family A(T ) is normal
iff A(T ) = M(T, S) for some σ-foundation S.
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The number ω(f,A) ≡ sup{|f(t)− f(s)| | t, s ∈ A} is called the oscillation
of a function f ∈ F (T ) on a set A ⊂ T .
For a collection of subsets π ≡

(

Ai ⊂ T | i ∈ I
)

the number
ω(f, π) ≡ sup

(

ω(f,Ai) | i ∈ I
)

is called the oscillation of f on π.
A collection π ≡

(

Ai ⊂ T | i ∈ I
)

such that
⋃
(

Ai | i ∈ I
)

= S is called a
cover of a set S.
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Proposition 1. Let S be a σ-foundation on T and f ∈ F (T ). Then
f ∈ M(T, S) [f ∈ Mb(T, S)] iff for every ε > 0 there is a countable [finite]
cover π ≡

(

Si ∈ S | i ∈ I
)

of T such that ω(f, π) < ε.
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Ai ⊂ T | i ∈ I
)

such that
⋃
(

Ai | i ∈ I
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= S is called a
cover of a set S.

Proposition 1. Let S be a σ-foundation on T and f ∈ F (T ). Then
f ∈ M(T, S) [f ∈ Mb(T, S)] iff for every ε > 0 there is a countable [finite]
cover π ≡

(

Si ∈ S | i ∈ I
)

of T such that ω(f, π) < ε.

The use of the “cover language” in Proposition 1 gives the basis for
introducing new postclassical families of functions possessing good
properties for any foundation S, unlike the classical family of measurable
functions has these properties only for a σ-foundation S.
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A function f ∈ F (T ) is called distributable [uniform] on a descriptive
space (T, S) if for every ε > 0 there is a countable [finite] cover
π ≡

(

Si ∈ S | i ∈ I
)

of the set T such that ω(f, π) < ε.
The family of all distributable [uniform] functions is denoted by D(T, S)
[U(T, S)]. Clearly, U(T, S) ⊂ Fb(T ).



Postclassical families of functions

5 / 12

A function f ∈ F (T ) is called distributable [uniform] on a descriptive
space (T, S) if for every ε > 0 there is a countable [finite] cover
π ≡

(

Si ∈ S | i ∈ I
)

of the set T such that ω(f, π) < ε.
The family of all distributable [uniform] functions is denoted by D(T, S)
[U(T, S)]. Clearly, U(T, S) ⊂ Fb(T ).

Theorem 1. Let S be a foundation on T . Then the family D(T, S) is
normal and the family U(T, S) is boundedly normal, i. e., they possess all
properties of the families M(T, S) and Mb(T, S) from the Lebesgue –Borel
theorem, respectively.



Postclassical families of functions

5 / 12

A function f ∈ F (T ) is called distributable [uniform] on a descriptive
space (T, S) if for every ε > 0 there is a countable [finite] cover
π ≡

(

Si ∈ S | i ∈ I
)

of the set T such that ω(f, π) < ε.
The family of all distributable [uniform] functions is denoted by D(T, S)
[U(T, S)]. Clearly, U(T, S) ⊂ Fb(T ).

Theorem 1. Let S be a foundation on T . Then the family D(T, S) is
normal and the family U(T, S) is boundedly normal, i. e., they possess all
properties of the families M(T, S) and Mb(T, S) from the Lebesgue –Borel
theorem, respectively.

Not all postclassical families of functions on a descriptive space are
reducible to the classical ones.
Proposition 2. There exists a foundation K on T ≡ [0, 1[⊂ R such that
for every σ-foundation S on T the inequality U(T,K) 6= Mb(T, S) holds.
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Descriptive spaces are not a “native habitat” for the postclassical families,
in contrast to the classical family of measurable functions. For this reason,
below we consider postclassical families of uniform and distributable
functions on prescriptive spaces natural for them.
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Descriptive spaces are not a “native habitat” for the postclassical families,
in contrast to the classical family of measurable functions. For this reason,
below we consider postclassical families of uniform and distributable
functions on prescriptive spaces natural for them.

A pair (T,C), where T is a set and C is a family of covers
π ≡

(

Ai ⊂ T | i ∈ I
)

of T (a covering on T ) containing the one-member
cover

(

Ai ≡ T | i ∈ {i}
)

, will be called a prescriptive space.

A covering C is called multiplicative if for any collections
π ≡

(

Ai | i ∈ I
)

∈ C and ρ ≡
(

Bj | j ∈ J
)

∈ C the collection
π ∧ ρ ≡

(

Ck | k ∈ K
)

, where K ≡ I × J and Ck ≡ Ai ∩Bj for every
k ≡ (i, j) ∈ K, belongs also to C.



Distributable functions on prescriptive spaces

7 / 12

A function f ∈ F (T ) is called distributable on the prescriptive space (T,C)
if for every ε > 0 there is countable cover π ∈ C of the set T such that
ω(f, π) < ε.
The set of all such functions will be denoted by D(T,C).



Distributable functions on prescriptive spaces

7 / 12

A function f ∈ F (T ) is called distributable on the prescriptive space (T,C)
if for every ε > 0 there is countable cover π ∈ C of the set T such that
ω(f, π) < ε.
The set of all such functions will be denoted by D(T,C).

If S is a foundation, then covering Covc S consisting of all countable covers
(

Si ∈ S | i ∈ I
)

of T is multiplicative.
The family D(T,Covc S) was denoted above by D(T, S).
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A function f ∈ F (T ) is called distributable on the prescriptive space (T,C)
if for every ε > 0 there is countable cover π ∈ C of the set T such that
ω(f, π) < ε.
The set of all such functions will be denoted by D(T,C).

If S is a foundation, then covering Covc S consisting of all countable covers
(

Si ∈ S | i ∈ I
)

of T is multiplicative.
The family D(T,Covc S) was denoted above by D(T, S).

Theorem 2. Let C be a multiplicative covering on T . Then D(T,C)
possesses all the properties of M(T, S) from the Lebesgue –Borel theorem
except closedness with respect to multiplication and division by
nonvanishing functions.
Under some additional conditions on C the family D(T,C) has these two
properties as well.
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A function f ∈ F (T ) is called uniform on the prescriptive space (T,C) if for
every ε > 0 there is a finite cover π ∈ C of the set T such that ω(f, π) < ε.
The set of all such functions is denoted by U(T,C).
It is easy to see that U(T,C) ⊂ Fb(T ).
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A function f ∈ F (T ) is called uniform on the prescriptive space (T,C) if for
every ε > 0 there is a finite cover π ∈ C of the set T such that ω(f, π) < ε.
The set of all such functions is denoted by U(T,C).
It is easy to see that U(T,C) ⊂ Fb(T ).

If S is a foundation, then the covering Covf S consisting of all finite covers
(

Si ∈ S | i ∈ I
)

of T is multiplicative.
The family U(T,Covf S) was denoted above by U(T, S).

Theorem 3. Let C be a multiplicative covering on T . Then U(T,C) is
boundedly normal, i. e., it has all the properties of Mb(T, S) from the
Lebesgue –Borel theorem.

The following theorem shows that the families of uniform functions on
prescriptive spaces are as natural as the families of measurable functions
on descriptive spaces.

Theorem 4. A family A(T ) ⊂ Fb(T ) is boundedly normal iff
A(T ) = U(T,C) for some multiplicative covering C.
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Let (T,G) be a Hausdorff topological space with the ensembles G and F of
open and closed sets, respectively.
If (T,G) is not a Tychonoff (completely regular) space, then the space
C(T,G) = M(T,G) of continuous functions may contain only constant
functions.
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functions are non-trivial for any Hausdorff space. In particular, they
contain functions χ{t} and χT\{t} for every t ∈ T , respectively.
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If (T,G) is not a Tychonoff (completely regular) space, then the space
C(T,G) = M(T,G) of continuous functions may contain only constant
functions.

The families SCu(T,G) and SC l(T,G) of upper and lower semicontinuous
functions are non-trivial for any Hausdorff space. In particular, they
contain functions χ{t} and χT\{t} for every t ∈ T , respectively.

These families as their subfamilies SCu
b (T,G) and SC l

b(T,G) of bounded
functions are uniformly closed (closed with respect to uniform
convergence), but they are not linear spaces (they are only cones).
Their linear envelopes H(T,G) ≡ SC l(T,G) + SCu(T,G) and
Hb(T,G) ≡ SC l

b(T,G) + SCu
b (T,G) are linear spaces but they are not

uniformly closed.
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Due to the Lebesgue –Borel –Hausdorff theorem we know that the
smallest normal family containing H(T,G) (its normal envelope) is the
classical family of measurable functions M(T, S) for some σ-foundation S.
Clearly, S ⊃ G.
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K ≡ {G ∩ F | G ∈ G&F ∈ F}.
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Due to the Lebesgue –Borel –Hausdorff theorem we know that the
smallest normal family containing H(T,G) (its normal envelope) is the
classical family of measurable functions M(T, S) for some σ-foundation S.
Clearly, S ⊃ G.

Theorem 5. The boundedly normal envelope of Hb(T,G) is the
postclassical family U(T,K) of uniform functions with the foundation
K ≡ {G ∩ F | G ∈ G&F ∈ F}.

Note that S = Kσ.
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The postclassical family U(T,K) plays also the key role in solving the
problem of characterization of Radon integrals as linear functionals for an
arbitrary Hausdorff space (T,G). This problem originates in the
well-known Riesz representation theorem on characterization of
Riemann – Stiltjes integrals as bounded linear functionals.
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For various classes of spaces (T,G) this problem was solved by J. Radon
(1913), S. Saks (1937), S. Kakutani (1941), P. Halmos (1950), E. Hewitt
(1952), N. Bourbaki (1969) by means of the classical family C(T,G).

This classical family is not appropriate in the general case because it may
contain only constant functions, and, therefore, does not separate Radon
measures (µ 6= ν but

∫

f dµ =
∫

f dν on C(T,G)).
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(1913), S. Saks (1937), S. Kakutani (1941), P. Halmos (1950), E. Hewitt
(1952), N. Bourbaki (1969) by means of the classical family C(T,G).

This classical family is not appropriate in the general case because it may
contain only constant functions, and, therefore, does not separate Radon
measures (µ 6= ν but

∫

f dµ =
∫

f dν on C(T,G)).

Using uniform functions we obtain, e. g., the following result.
Theorem 6. The mapping µ 7→

∫

· dµ|U(T,K) is a bijection (moreover,
an isomorphism) between the lattice linear spaces of bounded Radon
measures and of σ-exact linear functionals on U(T,K).
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Let (T,G) be a Tychonoff space and µ be a positive bounded Radon
measure on it. The Riemann integral for functions f : T → R was defined
by N. Bourbaki.
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Let (T,G) be a Tychonoff space and µ be a positive bounded Radon
measure on it. The Riemann integral for functions f : T → R was defined
by N. Bourbaki.

Let Nµ ≡ {N ⊂ T | ∃F ∈ Fµ (N ⊂ F )}, where Fµ is the ensemble of all
closed null sets, and ZPµ ≡ {G ∪N | G ∈ G&N ∈ Nµ}.

Theorem 6. Let f ∈ F (T ). Then f is Riemann integrable on (T,G) iff
f ∈ U(T,ZPµ).

This assertion gives new internal description of Riemann integrable
functions different from the Lebesgue description.
This is a new description even for T ≡ [a, b].
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Let (T,G) be a Tychonoff space and µ be a positive bounded Radon
measure on it. The Riemann integral for functions f : T → R was defined
by N. Bourbaki.

Let Nµ ≡ {N ⊂ T | ∃F ∈ Fµ (N ⊂ F )}, where Fµ is the ensemble of all
closed null sets, and ZPµ ≡ {G ∪N | G ∈ G&N ∈ Nµ}.

Theorem 6. Let f ∈ F (T ). Then f is Riemann integrable on (T,G) iff
f ∈ U(T,ZPµ).

This assertion gives new internal description of Riemann integrable
functions different from the Lebesgue description.
This is a new description even for T ≡ [a, b].

Thank you!


	Descriptive spaces
	The classical family of measurable functions
	The cover characterization of measurable functions
	Postclassical families of functions
	Prescriptive spaces
	Distributable functions on prescriptive spaces
	Uniform functions on prescriptive spaces
	Application I: Hausdorff–Sierpinski problem
	Application I: Hausdorff–Sierpinski problem
	Application II: the Riesz–Radon–Fréchet problem
	Application III: new characterization of Riemann integrable functions

