
7. Conjugacy and iterations

Functions f and g are called conjugated whenever f = R ◦ g ◦ R−1 for some
function R.

Exercise. Show that in this case f (n) = R ◦ g(n) ◦R−1.

We use notation f ∼ g whenever f(x)
g(x)

x→0−−→ 1.

1. a) Show that for any n ∈ Z the function cos(n arccos(x)) is a polynom,
and that any two functions of this kind commute one with each other.
b) Show that for any n ∈ Z the function sin((2n + 1) · arcsin(x)) is a
polynom, and that any two functions of this kind commute one with
each other.
c) Show that for any n ∈ Z the function tan(n arctan(x)) is rational,
i.e. is a quotient of two polynoms. Show that any two functions of this
kind commute one with each other.

Remark. Parts a and b provides nontrivial examples of commuting
families of polynoms. By the deep theorem of Reed any other nontrivial
family of commuting polynoms essentially coincides with a or b.

2. Show that the function sin x is not conjugated to a polynom.

3. Find fractional iterations of functions ax+b
cx+d

for any a, b, c, d.

Hence we can explicitly describe fractional iterations of linear functions,
we wish to connect them with as many fractional iterations of other
functions as possible. Essentially we wish to find a big enough class of
functions f for which exists a conjugating function R such that

R ◦ f ◦R(−1)

is a linear function. From time to time it is reasonable to find such
conjugating function in some neighborhood of some point.

4. Let f be a function such that f(0) = 0, f ′(0) = k. Evaluate (f (n))′(0).
Assume that f is conjugated to lx for some number l with some smooth
(i.e. infinitely differentiable) conjugating function R. Prove that in
this case k = l. If |k| < 1 then f (n)(x)

n→∞−−−→ 0 in for all x from some
neighborhood of 0. In this case we call 0 an attracting point of f . If
|k| > 1 we call 0 a repelling point of f .
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5. a) Let 0 be an attracting point of a continuously differentiable function
f . Prove that for all x0 from some neighborhood of 0 the limit

lim
n→∞

f (n)(0)

kn
= G(x0)

exists. Prove that G is continuous and that G(k ·G(−1)(x)) = f(x).
b) Prove that G is continuously differentiable.
c*) Prove that if f smooth then G is smooth.

6. Prove the following equality.
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Definition. Let M ⊂ R be a set. We call x ∈M a limit point of M if
any neighborhood of x contains infinitely many points of M . We call
the set {f (n)(x)}n∈Z≥0

an orbit of x under the action of f .

7. Let f, g be a pair of commuting smooth functions such that f(0) =
g(0) = 0 and f(x) ∼ xλ, g(x) ∼ xδ. Then f = g(logδ λ) (Here you have
to define fractional iterations in a spirit of the introduction).

8. We call two points x0, x1 of an invertible function f neighbor if there
exists a point x such that lim

n→−∞
f (n)(x) = x0 and lim

n→+∞
f (n)(x) = x1.

Let x0 and x1 be common neighbor fixed points of commuting invertible
continuously differentiable functions f and g. Assume x0 is attracting
and x1 is repelling for both f and g. Prove that in this case

log|g′(x0)| |f ′(x0)| = log|g′(x1)| |f ′(x1)|.

9. Prove that functions of problems 6.1, 6.3, 6.5, 6.7 are fractional itera-
tions of the corresponding functions.

10. Let f be a decreasing function such that f(0) = 0 and f(x) 6= x for all
x 6= 0. Does there exists an infinite family F of pairwise noncommuting
functions such that any element of F commutes with f?
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8. More about polynoms

1. Let P (x) be a polynom of degree n > 1. Then for all m the set of
polynoms of degree m such that they commute with f is finite.

2. Let P (x) be a polynom of degree n > 1, Q(x) be a polynom of degree
m > 1 such that
a) P ◦ Q = Q ◦ P , b) P (x0) = Q(x0) = x0, c)P ′(x0) > 1, d) in
any punctured neighborhood of x0 there exists a point xi such that

P (k)(xi)
k→∞−−−→∞.

Prove that P ′(x0)
logn(m) = Q′(x0).

Remark. We note that the condition ”to be commutative” is algebraic,
i.e. is equivalent to a system of polynomial equations on coefficients. There-
fore we could assume that the value of derivatives in all fixed point are al-
gebraic. In assumption of transcendency of powers αlogn(m), where α is some
algebraic number and n is not a rational power of α, we have that k is a ra-
tional power of n. It is interesting to derive the classification of commuting
polynoms from this observation. This problem is really valuable because it
provides a connection between dynamical systems, theory of transcendence
numbers and theory of Diofant approximations.
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