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ABSTRACT

An analysis technique is described within of the non-extensive Tsallis thermodynamics for experimentally
recorded time scans, for displacement vectors, and for the drift velocity of the beam energy center. The vari-
ations of the Boltzmann-Gibbs entropy, the q-deformed Tsallis entropy and the available states number of the
statistical ensemble of the recorded positions of the collimated wave beam energy center and its drift velocity
are determined. To determine the type of attractors of the studied stochastic process, the spectra of Lyapunov
exponents for the positional parameters of the wave beam are analyzed.

Keywords: Non-extensive thermodynamics, q-entropy Tsallisa, escort distribution, energy distribution, Lya-
punov parameters

1. INTRODUCTION

The traditional approach adopted in the Bolman-Gibbs thermodynamics is not applicable in the long paths
analysis, since the basic assumption that all cells of the phase volume are equally accessible is incorrect because
of spatial thermal inhomogeneity, non-equilibrium, and unsteadiness of the propagation environment of the
signal beam. In fact, in classical thermodynamics there are no forbidden states and the probability of visiting
available sites is leveled. The natural consequence of such models is the canonical distribution for the population
probability of a particular state as a function of the energy value.1,2

Non-equilibrium, inhomogeneous, and non-stationary systems have a different type of phase space that allows
interaction with delay, non-local interactions, and multifractal structure.3,4 The consequence of the phase space
modification will be a loss of additivity for a number of thermodynamic characteristics, primarily for internal
energy, temperature and entropy.5,6 The observed characteristics of physical systems are modified, but in the
limit of transition to continuous, smooth, and Euclidean phase space, they coincide with traditional.7–9

Define the main accents in the observed experimental characteristics:

• multimodality of the distribution functions of the positional characteristics of the collimated beam at the
output of the path,

• examples of the variation kinetics of the q-deformed Tsallis entropy during daylight hours, informativeness
of experimentally determined q-entropy as a measure of system disequilibrium and non-extension,

• escort distribution profiles allowing to determine the ensemble average of allowed states value of measured
states,

• q-deformed energy distribution profiles for various potentials,

• micro-time variations of the maximum Lyapunov exponent determining the time of stochastic quasista-
tionary system,

• the spectrum evolution of Lyapunov exponents, indicating the preservation of the global stochastic structure
(hyperhaos).
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2. ENSEMBLE OF STATES COLLIMATED WAVE BEAM

The experimental series obtained on the long path described in detail earlier in the work.10,11 Define the
experimental control modes:

• the beam profile used is single-mode Gaussian,

• ”path length” collimated beam - 1350 m,

• registration aperture through diffused frosted glass - 256x256 mm2,

• resolution of the technical vision camera - 1 pt/mm,

• frame exposure – from 10 µs to 100 µs depending on conditions,

• polling frequency – from 125 Hz to 3 kHz,

• video series duration – up to 10000 frames.

Each video sample is considered as a statistical ensemble of the intensity distributions realizations and
kinematic characteristics of the wave beam energy center. We define a set of controlled characteristics for
each frame and a pair of neighboring frames:

• radius vector and its components for the energy center position of the beam,

• if the task allows you to set the target coordinate, the displacement of the energy center from the target
coordinate is controlled,

• vector drift velocity of the energy center,

• drift velocity components.

To analyze the statistical properties of recorded video samples, are defined a spatial discretization grid, each
of whose cells corresponds to the available states for the energy center of the wave beam in the registration plane.
The grid pitch vertically and horizontally is defined in 2 mm, the binding to the vertical and horizontal directions
is justified by the preferential direction of convective currents initiated by the temperature gradient (vertical)
and the direction of the wind load (horizontal). Given the known distribution of the wave beam intensity in the
registration plane, the components of the displacement vector of the energy center xC, yC are determined as
follows:

xC =

∑256
i=1 c ∗ I(c, r)∑256
i=1 I(c, r)

, yC =

∑256
i=1 r ∗ I(c, r)∑256
i=1 I(c, r)

, (1)

here (c, r) are the numbers of columns and rows in the array of the video selection frame.

Almost all of the analyzed samples in both directions are characterized by multimodal distributions, regardless
of the time of day and the type of the analyzed characteristic — displacement or drift velocity.

Proc. of SPIE Vol. 11560  1156011-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Nov 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 1. Probability distribution functions for horizontal (top row) and vertical offsets (bottom row)

3. ENTROPY OF TSALLIS

We define the q - parametric Tsallis entropy as follows:3,12

Sq = −kB
1−

∑W
i=1 p

q
i

1− q
, (2)

for q → 1 the expression goes over into the formula for the Boltzmann-Gibbs entropy.

An estimate of the ”deformation” q parameter can be performed, to a first approximation, based on the
value of the average and dispersion of the distribution function over inverse temperatures:

q =
< β2 >

< β >2
=
σ2

β2
0

+ 1. (3)

The assessment is obviously valid for small values of internal energy compared with the ”thermal gap”, in
the system under study:

E << k(Tmax − Tmin),⇒ B(E) = e−β0E

[
1 +

1

2
(q − 1)β2

0E
2 + . . .

]
. (4)

Consider the variations of the Tsallis entropy and the Boltzmann-Gibbs entropy reconstructed from a series
of experimental samples for two consecutive days at the end of April 2019. The first of two days was clear, the
second cloudy. The processing used four time series corresponding to the components of the displacement vector
and the velocity vector of the energy center of the collimated wave beam.

In Fig.2 and Fig.3 q-strain values from 0 to 1.5 were used with step of 0.5. We give the main properties of
the obtained distributions:

• q = 0 – the value of the Tsallis entropy is one less than the number of available states,

• q = 0.5 – q-deformation increases the contribution of unlikely states and reduces the contribution of highly
probable states, the sum of the corresponding components becomes more than one,
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• q = 1 – the Tsallis entropy value coincides with the Boltzmann-Gibbs entropy value,

• q = 1.5 – q-deformation reduces the contribution of unlikely states and increases the contribution of highly
probable states, the sum of the corresponding components becomes more than one.

Figure 2. Variation of q-entropy at q = 0, 0.5, 1.0, and 1.5 for April 29, 2019

Strong variations in the q-parametric entropy of the system under study can be related to its non-additivity
for independent systems. For example, for a two-component system whose states are described by a joint
multiplicative distribution:13,14

p(~r1;~r2) = p1(~r1)p2(~r2), (5)

where p1(~r1), p2(~r2) belong to independent q-systems, the entropy of the total system is defined as follows:

Sq(p(~r1;~r2)) = Sq(p1(~r1)) + Sq(p2(~r2)) +
1− q
kB

Sq(p1(~r1))Sq(p2(~r2)) (6)

If the subsystems under consideration are dependent, the relation is valid with the use of conditional proba-
bility distributions:

Sq(p(~r1;~r2)) = Sq(p1(~r1)) + Sq(p2(~r2)|p1(~r1)) = Sq(p2(~r2)) + Sq(p1(~r1)|p2(~r2)). (7)
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Figure 3. Variation of q-entropy at q = 0, 0.5, 1.0, and 1.5 for April 30, 2019

Modes are possible in which conditional probability p1(~r1)|p2(~r2) = p2(~r2) or p2(~r2)|p1(~r1) = p1(~r1). For such
modes, the term “pseudo-additivity” is introduced.2

4. Q-PARAMETRIC ESCORT DISTRIBUTIONS

The q-deformation of the probability distribution function to violates the original normalization. To compensate
for such violations, an apparatus of escort characteristics calculated for each q value is proposed. Define escort
distribution for the q-deformed probability so:2,15

Pi(q) =
pqi∑W
i=1 p

q
i

=
pqi
Zq

(8)

here Zq is the generalized q-parametric statistical sum.

q-deformed normalized distribution can be written as:

W∑
i=1

Pi(q) = 1, (9)

Based on the escort probability distribution, we determine the q-deformed value of the system internal energy:
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Figure 4. Escort distribution profiles for q = 0.5 (left) and q = 2.0 (right). The initial distribution is in the center.

W∑
i=1

Pi(q)Ei = Uq, (10)

where Ei are the system energy levels.

Examples of q-deformed escort distributions for q = 0.5, 1.0, and 2.0 are shown in Fig.4.

5. Q-PARAMETRIC FAMILIES OF ENERGY DISTRIBUTIONS

The modification of the escort probability distributions profile with a change in the q-parameter is accompanied
by a change in the internal energy of the system while saving values the energy levels:1,15,16

Uq =

∑
pqiEi∑
pqi

. (11)

We write the q-deformed energy distribution:

p̃i =
1

Z̃q

[
1− (1− q)β̃q(Ei − Uq)

] q
1−q

. (12)

here Zq is the q-deformed statistical sum –

Z̃q =

W∑
i=1

[1− (1− q)β̃q(Ei − Uq)]
q

1−q , (13)

βq – q - deformed average value of the inverse temperature:

βq =
β0∑W
i=1 p

q
i

. (14)
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Let the ”deformation energy” of a collimated wave beam can be expanded in a series in degrees of displacement
from the unperturbed position of the beam axis.

Ei = κ1ρ+ κ2ρ
2 + ..., ρ =

∣∣xCi − xC∣∣ . (15)

Let’s define the q-deformed internal energy according to (11) and construct a family of characteristics for the
linear and quadratic approximations for the Hamiltonian.

Figure 5. q-parametric energy distributions for the Hamiltonian of the form H(ρ) ∼ κ1ρ

Figure 6. q-parametric energy distributions for the Hamiltonian of the form H(ρ) ∼ κ2ρ
2

Regardless of the Hamiltonian type, the q-parametric family of energy characteristics has a number of common
properties:
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• in the range of q ∈ [0, 0.8) the dependence of the population decreases linearly with increasing level energy,
which is consistent with the spectra of the observed fluctuation processes and is typical for fractal and
multifractal systems,

• in the values range of q ∈ [2, 2.7) the dependence takes the hyperbola form

• in the values range of q ∈ [0.9, 1.4) the dependence can be approximated by the Boltzmann exponent.

In fact, by the energy distribution shape, it is possible to determine the q-strain value and determine the degree
of thermal nonequilibrium in the system by the relative dispersion of the temperature distribution function.

6. Q-PARAMETRIC EQUATIONS IN THE GASDYNAMIC APPROXIMATION

Let’s consider the atmospheric path as a dynamic non-extensive system in which an unsteady distribution of
particles in phase space is realized f(~r,~v; t). The probability distribution function is normalized, the element
of the phase space volume ~z = (~r,~v). Let’s introduce the entropy functional determined by the distribution
function f(~z; t):15

Sq [f ] = − kB
1− q

∫
(f(z)− (f(z)q)dz (16)

Let it be necessary to experimentally determine the macroscopic value of the q-system – 〈Θq〉. Perform
averaging of the corresponding microscopic value over the q-deformed distribution.

〈Θq〉 ≡
∫

Θ(~r; t)f(z)qdz (17)

Note that in this case, the renormalization of the obtained value is not performed. This approach is typical
for Curado Tsallis statistics.8

Let’s define a number of q-parameters that determine the movement of gas flows:

– q - the number density of particles,

nq(~r; t) ≡
∫
f(z)qd~v; (18)

– q - the mass density
ρq(r; t) ≡ mnq(~r; t), (19)

where m is the particle mass;

q is the hydrodynamic velocity of the volume element,

~uq(r; t) =
1

ρq(r; t)

∫
m~vf(z)qd~v; (20)

specific internal q - energy,

~εq(r; t) =
1

ρq(r; t)

∫
m

2
|~v − ~uq|2f(z)qd~v. (21)

Using q-deformed variables, can obtain a system of q-hydrodynamic equations:

dρq
dt

+ div(ρq~uq) = 0, (22)

d(ρq~uq)

dt
+Div(~Pq + ρq~uq~uq) = 0, (23)
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d(ρqεq)

dt
+ div( ~Jq + ρqεq~uq) + ~Pq : Grad(uq) = 0, (24)

here ~Pq – stress tensor, ~Jq – heat flow. More details about the properties of the solutions of the written system
of equations can be found in.15

7. LYAPUNOV EXPONENTS FOR TIME SERIES OF POSITIONAL
CHARACTERISTICS

The determination of the chaotic process class is possible based on the Lyapunov exponents spectrum of equidis-
tant time series of positional characteristics. To determine the dimensionality of the phase space, we use the
nearest neighbors algorithm (NN)17 in combination with the verification of surrogate data. To determine the
maximum Lyapunov exponent, the Kantz algorithm is used.18 In Fig.7 and Fig.8 presents three-second sweeps
for the maximum Lyapunov exponent obtained by the sliding window method for a separate video sample.19

Figure 7. Sweeps of Lyapunov exponents for xC, yC offsets within the same video series

Figure 8. Sweeps of Lyapunov exponents for drift velocities vxC, vyC within the one video series

Significant non-stationarity of the observed values of the maximum Lyapunov exponent indicates a hyper-
chaotic mode of the system motion in phase space. To more accurately limit the class of available modes, let’s
consider the full range of Lyapunov exponents of the system under study in the scale of one video sample dura-
tion.The number of Lyapunov exponents coincides with the number of freedom degrees in the phase space. This
number can change in different parts of the phase trajectory. In Fig.9 values of phase space dimensions for the
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analyzed parameters are presented. In Fig. 10 semidiurnal sweeps of the spectrum components of Lyapunov
exponents are presented.

Figure 9. Sweep of phase space dimension values for various positional parameters of the wave beam center energy

Figure 10. Sweep of the Lyapunov exponents for the horizontal displacement of the wave beam center energy

In almost all video series, the spectrum of Lyapunov exponents contains at least two positive definite com-
ponents. The detected relatively weak component variation requires additional experimental analysis in the
observation time interval. In a first approximation, the observed spectrum can be considered quasistationary
and reflecting properties of convective flows in the selected time interval.

Conclusion

Let’s formulate the main results of the experimental study:

• The multimodal distribution function for the recorded realizations of the displacement vector components
and the drift vector of the energy-bearing center collimated wave beam can justify the use of Tsallis non-
extensive thermodynamics, which allows us to control the fraction of states with low and high probability.
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The thermodynamics and kinetics of complex systems based on the q-deformed Tsallis entropy, where q
is the measure of non-additivity, predicts asymptotically power-law statistical distributions that go over
into the exponential distribution in the limit q → 1. It is these characteristics that are observed in the
experimental series.

• The q-entropy of the positional parameters’ statistical ensemble is informative in assessing of thermal
nonequilibrium degree of a multicomponent system and can be used as a measure of the non-stationarity,
spatial inhomogeneity, and nonequilibrium of the optical path. For q → 0, the Tsallis entropy value
coincides with the number of available states of the ensemble under study, determined by the spatial
discretization conditions of the registration system. Such characteristic can be used for calibrating digital
recorders.

• The considered method for the analysis of q-deformed characteristics includes an analysis of escort distri-
butions, variation kinetics of the q-entropies set and energy distributions. Based on escort distributions,
the experimentally observed ensemble-average parameters included in the state equations and the process
equation can be calculated – the average q-density of gas particles, q-velocity of gas drift in the current
tube, q-density of internal energy.

• On the microscale of time in hundreds of milliseconds, the maximum Lyapunov exponent varies greatly.
However, with the change of timescale to more than 1 second, the variations decay and relatively weakly
change in time during daylight hours. The observed positive values of the Lyapunov exponent make it
possible to attribute the phase trajectories of positional characteristics to a specific type of chaotic regime
– hyperhaos.
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