830

Neural Network Algorithm for Forecasting and Parameter Estimation of the Coriolis Vibratory Gyroscope

Basarab M.*, Ivanov P.*, Lunin B.**

-Bauman Moscow state Technical Unversity, Moscow Russia
** Moscow State University n.a. Lomonosov, Moscow, Russia

STATEMENT OF THE PROBLEM

The problem is to identify the dynamic parameters of the Coriolis Vibratory Gyroscope acceleration) and the parameters of the wave drift caused by inhomogeneities in the
wave drift caused by inhomogeneities in the
physical characteristics of the resonator material

PRINCIPLE OF OPERATION

George Bryan's effect precession of elastic standing
waves in axisymmetrical shells.

Fig. 1. The "wine-glass" or hemispherical resonator gyroscope (HRG)
Bryan, G. H., On the beats in the vibrations of a
revolving cylinder or bell // Proc. Camb. Phil. Soc revolving cylinder or bell/ Proc. Camb.
Math. Phys Sci, Vol. 7, 101-111, 1890.
A standing wave is excited in the resonator along the 2nd form of plane vibrations, characterized by 4 nodes and 4 antinodes alternating through 45°.

Fig. 2. The second vibrational mode of the CVG and the wave precession
When an angular velocity Ω occurs, the initial wave rotates over time t through an angle, with a coefficient of 0.4 (the "Bryan factor") proportional to the angle of rotation of the basement. $\phi(t)=\varphi_{0}-\frac{2}{5} \int_{0}^{\prime} \Omega(s) d s$

MATHEMATICAL MODEL
The PDE of free vibrations of an imperfect resonator: $w^{\prime \prime}-\ddot{w}+4 \Omega w^{\prime \prime}+\left[x^{2}\left(w^{*}+w\right)\right]^{3}+\left[x^{2}\left(w^{*}+w\right)\right]^{\prime}$ $+\xi\left[x^{2}\left(w^{2}+w\right)\right]^{1 "}+\xi\left[x^{2}\left(w^{2}+w\right)\right]^{\prime \prime}=0$, where $w(\varphi, t)$ is the radial movement of a point on the edge; Ω is the angular rate, $\kappa^{2}=E J\left(\rho S R^{4}\right)-;$ is the
density; S is the cross-section area; R is the radius of de middle neutral line; E is Young's modulus of the material; $J=h^{4} / 12$ is the moment of inertia of the cross section relative to the neutral axis; h is the thickness; ξ is the decay time characterizing the Q -factor. Physical parameters are
$\kappa^{2}=\kappa^{2}(\varphi), \quad \rho=\rho(\varphi)$, The presence of $4^{\text {th }}$ harmonics of the damping defect and elastic mass
anisotropy anisotropy
$\xi_{=}=\xi_{0}+\Delta_{c}^{(1)} \cos 4 \varphi+\Delta_{\Delta}^{(1)} \sin 4 \varphi$. $\kappa^{2}=\kappa_{0}^{2}+\Delta_{0}^{(2)} \cos 4 \varphi+\Delta_{c}^{(2)} \sin 4 \varphi$
yields the frequency split.

$\omega_{1}<\omega_{0}<\omega_{2}\left(\omega_{0}=6 \kappa \wedge 5\right)$
Fig. 3. Frequency split Solution is found in the form
$w(\varphi, t)=p(t) \sin (2 \varphi)+q(t) \cos (2 \varphi)$
To identify the parameters of the 4th harmonics of defects, one should consider the resonator on a fixed basement $(\Omega=0)$. This leads to the system of ODEs:

(*)
The problem of identification:
given he values of time series $p_{n}=p\left(t_{n}\right), q_{n}=q\left(t_{n}\right)$ for a
time interval $[0, T]$, evaluate all the model time interval $[0, T]$, evaluate all the model parameters $\omega_{0}^{2}, \xi_{0}, \Delta_{c}^{(1)}, \Delta^{(1)}, \Delta_{c}^{(2)}, \Delta^{(2)}$

SOLUTION OF THE PROBLEM: NNAR
Single-layer linear neural autoregression network (NNAR) for time series forecast:
$p_{j}^{*}=\sum_{i=1}^{m} w_{1,2-1} p_{j-1}+\sum_{i=1}^{m} w_{i, 2} q_{j-1} \quad(\star \star \star)$
$q_{i}=\sum_{n=1}^{n} w_{2-1} p_{1+1}+\sum_{n=1}^{n} w_{2-2} q_{j-1}$
Finding the weights of NNAR:
Widrow-Hoff (delta) rule
Widrow-Hoff (delta) rule
The shortened forecast model:

$$
p_{j}^{*}=\sum_{i=1}^{m} w_{i} p_{j-1}
$$

\qquad
Identification algorithm
1.Replace the time derivatives in (*) by finite differences of the m-th order, system of ODEs ($\left.{ }^{(}\right)$.
2.Represent the extreme right values of the grid functions $\left(p_{j}, q_{j}\right)$ through the of
previous values $\left(p_{i-k}, j_{i-k}\right)$ in a form ((**) .
3.Comparing both representations, express
the desired parameters (**) in terms of
weight coefficients $w_{1 i} w_{2 i}$
NUMERICAL EXPERIMENT (IMPERFECT CVG)
Let in (*) be $\Delta_{c}^{(1)}=0.0114, \Delta_{s}^{(1)}=0.1462 ; \Delta_{c}^{(2)}=0, \quad \Delta_{s}^{(2)}=-0.0154$.
The length of the forecast window $m=4$, no. of training eras: 50,000 .
Weighting coefficients: $w_{1}=-0.5231, w_{2}=-0.063, w_{3}=0.4042, w_{1}=0.8109$.

Fig. 6. Forecasting the time series for the imperfect CVG on interval $(T, 2 T)$

NUMERICAL EXPERIMENT. PERFECT CVG
Consider the case: $\kappa^{2}=\kappa_{0}^{2}=$ const, $\xi=\xi_{0}=$ cons Consider the case:
(perfect resonator)

$$
\ddot{p}+\omega_{0}^{2} \xi_{0} \dot{p}+\omega_{0}^{2} p=0,
$$

The system of ODEs (${ }^{*}$): $\quad \vec{q}+\omega_{0}^{2} \xi_{0} \dot{q}+\omega_{0}^{2} q=0$.
Due to the fact that the equations are independent, the forecast is carried out according to scheme e $(* * * *)$. For , m, we have

Using the s

$$
0,5 \omega_{0}^{2} \xi_{0} \tau+1 \quad{ }^{2} \quad 0,5 \omega_{0}^{2} \xi_{0} \tau+1
$$

Physical parameters
Oscillation frequency $\omega_{0}=38598.5 \mathrm{rad} / \mathrm{s}$,
attenuation factor $\varepsilon_{0}=2.10^{-7} \mathrm{~s}$.
Parameters of computational experiment:
sampling step $\tau=1 \cdot 10-5 \mathrm{~s}$;

- training interval length $T=0.0025 \mathrm{~s}(M=250$ samples): - training interval le

In order to achieve a forecast quadratic error of less than 0.1% on the interval ($T, 4 T$, it was necessary to implement 250,000 training eras. The obtained values of the weights:
The relative error in calculating ω_{0} and Increase in the window length m leads to decrease in the nurease in the window length m leads to decrease in the
number of epochs providing the same forecast accuracy.

CONCLUSION

1. Parameters of an imperfect CVG are successfully estimated based on the linear neural network autoregression models.
2. The method allows one to get an explicit interpretation of he weight coefficients of the forecast model of the two imensional time series of SVG dynamics.
3. NNAR model also allows predicting the dynamics of oscillations, which is very important in optimizing inertial osciliations, which is ver
navigation algorithms.
