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a b s t r a c t

A new Method of Internal Auxiliary Source–Sinks (MIASS) is developed for the numerical
solution of the two-dimensional interior Dirichlet acoustic problem for the Helmholtz
equation. We give two versions of MIASS, one for a closed auxiliary curve (MIASS-C)
and another for an open auxiliary curve (MIASS-O). The mathematical and numerical
foundations of both versions are provided. In particular, we show that the integral
operator that pertains to the associated integral equation has a dense range. We then
demonstrate completeness and linear independence of the discrete system of source-
sinks. Indicative numerical results are given and numerical implementation aspects are
discussed.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

For a region with a smooth boundary, we develop a computational method for the two-dimensional (2-D) interior
irichlet acoustic problem pertaining to the scalar Helmholtz equation. Our method – to be referred to as the Method
f Internal Auxiliary Source–Sinks (MIASS) – resembles the well-known Method of Auxiliary Sources (MAS) [1] in that
oth methods first determine auxiliary quantities generating a solution that is required to satisfy the Dirichlet boundary
ondition. We introduce two versions of MIASS, called MIASS-C and MIASS-O. The differences between MAS and MIASS-C
re two:
i) The auxiliary quantities in MIASS-C are ‘‘source-sinks’’ as opposed to the sources of the MAS. By ‘‘source–sink’’ we
ean a point source together with a collocated point sink, superimposed so that there is no singularity at the source–
ink point. We note that the source–sink concept is well known in the literature (see, e.g., [2] and [3], which deal with
hree-dimensional (3-D) problems), but we use our source-sinks for a different purpose. Mathematically (for the case of
wo dimensions of interest herein) MIASS-C uses the first-kind Bessel functions (J0) in place of the Hankel functions (H (1)

0 )
of MAS.
(ii) In both MIASS-C and MAS, the auxiliary quantities lie on a closed curve. Whereas MAS uses an auxiliary curve lying
outside the region of interest (recall that we are discussing an interior problem), in MIASS-C the curve is inside.

Our second version, MIASS-O, signals yet two more departures from conventional MAS. The two differences between
MIASS-C and MIASS-O are:
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(iii) MIASS-O uses an auxiliary curve Γ that is open (instead of the closed auxiliary curve of MIASS-C).
iv) MIASS-O uses not only the forenamed source-sinks, but also the ‘‘source–sink derivatives’’, by which we mean the
ormal to Γ derivatives of the aforementioned Bessel functions.
In the present work, we confine ourselves to the 2-D interior Dirichlet problem. Thus, MIASS-C seeks a solution as

superposition of source-sinks, with each source–sink setting up a standing-wave distribution within the 2-D cavity in
hich the Helmholtz equation is to be solved. However, it is apparent that both MIASS-C and MIASS-O (or variants) can
e extended to more complicated boundary-value problems, including transmission problems. Thus, our main purpose
s to provide the mathematical and numerical foundations of a method that is expected to prove useful for a number of
roblems whose domain of interest includes an interior region.
After giving some preliminaries (Section 2) and defining the boundary-value problem we wish to solve, we describe (in

ection 3.1) what we call the ‘‘continuous version’’ of MIASS-C. Rather than a system of linear equations for the unknown
ource–sink coefficients, the continuous version involves an integral equation for an unknown function – called the density
that is defined on the auxiliary surface. In Section 4, we show that the integral operator pertaining to this integral
quation has a dense range. Sections 5 and 6, which rely on Section 4, demonstrate completeness and linear independence
f the (discrete) system of source-sinks. The above sections concern MIASS-C, but re-formulated theorems hold for the
forementioned MIASS-O, as shown in Section 7. Section 8 gives indicative numerical results that agree well with results
btained using MAS; in this section, some numerical-implementation aspects of MIASS are also briefly discussed. Finally,
ection 9 proposes future work that can shed further light on the advantages and disadvantages of MIASS.
The results in Sections 4–6 are similar to results in other works pertaining to complete sets of solutions to the

elmholtz equation, most notably the pioneering work of Kupradze [4]. Indeed, there are many such complete solutions
ets, so that the pertinent literature is vast (see, e.g. [5–9]). The complete set that is perhaps closest to our own is the set
f entire functions on pp. 49 and 52 of [5]—however, this set is relevant to 3-D problems.
Our MIASS can be viewed as a particular instance of a family of methods, usually called the Discrete Sources Methods

DSMs). The first version of the DSMs was published in 1980 [10]. It was limited to problems of electromagnetic scattering
y perfect conductors under axial excitation (i.e., a plane wave propagating along an axis of symmetry); this simple
xcitation allowed one to construct the approximate solution as a combination of electric and magnetic dipoles lying
n the axis of symmetry. In 1982, the method was extended to a homogeneous penetrable obstacle [11]; this was the
irst time regular (Bessel) functions were used to represent the field inside a penetrable scatterer. The 1983 work [12] is
theoretical treatment of DSMs. The first version of DSMs had some limitations associated with obstacle geometry, as

t was not able to analyze an obstacle that is oblate. This was overcome in 1983 by means of analytic continuation for
he support of the discrete sources (DSs) into a complex plane adjoining the symmetry axis of the obstacle [13]. Placing
he DSs on this complex plane eliminated the limitations of the original DSM scheme and enabled treatment of more
eneral obstacle geometries. In 1985, the DSM was generalized to analyze non-axial excitations of an axial symmetric
article [14]. Theoretical outlines of DSMs along with a generic scheme that allowed generation of complete systems
ased on DSs supports came in 1987, while some new complete systems of DSs for the Helmholtz and the Maxwell
quations were introduced in [15]. Another modification, proposed in 1993, allowed taking into consideration not only
he axial symmetry of the obstacle, but also the polarization of the exciting field [16]. Later editions of the DSMs had the
enefit of expanding the technique to practical applications; see, e.g., [17]. Further information on the DSMs family can
e found in chapter IV of [5].

. Notation and preliminaries

Our notation is similar to that of Colton and Kress [18,19]. The symbols D and G denote bounded open regions in R2.
e denote closures by D and G and boundaries by ∂D and ∂G. Thus, the exteriors are R2

\ D and R2
\ G. The symbols x

and y always denote points in R2, or in specified subsets of R2.
We proceed to summarize some well-known results that we will use throughout.

2.1. Addition theorems

We use two addition theorems involving the cylindrical Bessel and Hankel functions Jm(z) and H (1)
m (z) (see p. 101,

Eqs. (29) and (31) of [20]). The first is

H (1)
0

(√
z21 + z22 − 2z1z2 cos θ

)
=

∞∑
m=−∞

Jm(z1)H (1)
m (z2)eimθ , (1)

where θ ∈ R and z1, z2 ∈ C with |z1| < |z2|. The second is

J0

(√
z21 + z22 − 2z1z2 cos θ

)
=

∞∑
m=−∞

Jm(z1)Jm(z2)eimθ , (2)

where θ ∈ R and z1, z2 ∈ C. Since ([21], §10.19)

Jm (z) ∼
1

√

( ez )m
(m → +∞, z ̸= 0), (3)
2πm 2m
2
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m (z) ∼ −i

√
2
πm

( ez
2m

)−m
(m → +∞, z ̸= 0), (4)

the terms of the series on the right-hand side of (1) behave like (z1/z2)|m|/|m| for large |m|, so that the series converges
rapidly. The series in (2) converges even faster.

2.2. Dirichlet Problems for the Helmholtz equation; uniqueness theorems

The 2-D scalar Helmholtz equation is

∆u(x) + k2u(x) = 0, (5)

where ∆ is the Laplace operator and the sign of k ∈ C is chosen so that

Im k ≥ 0. (6)

For a C2 boundary ∂D, the Dirichlet boundary condition is

u(x) = f (x), x ∈ ∂D, (7)

where f (x) is a given continuous function.
When (5) holds for x in a region D that is bounded, then the interior Dirichlet problem consists of Eq. (5) (for x ∈ D)

together with the boundary condition (7). This problem has a unique continuous solution provided that D is non-resonant,
meaning that k is not an interior Dirichlet eigenvalue for D (pp. 75–78 and p. 107 of [18]). The said eigenvalues are real
and positive and accumulate only at infinity.

When (5) holds for x in the unbounded region R2
\D, then the exterior Dirichlet problem consists of (5) and (7) together

ith the Sommerfeld radiation condition at infinity, viz.,

lim
ρ→∞

√
ρ

(
∂u
∂ρ

− iku
)

= 0, ρ = |x|. (8)

This problem always has a unique continuous solution (p. 76 and p. 83 of [18]).

2.3. Single-layer potential

Let ∂D be a bounded closed curve in R2 with ∂D ∈ C2,α , where C2,α is the usual Hölder space of α-continuous functions
0 < α ≤ 1). Let g(x), the density, be a L2(∂D) function. The 2-D acoustic single-layer potential q(y) is the line integral (p.
9 and p. 66 of [19])

q(y) =
i
4

∫
∂D

H (1)
0 (k|x − y|) g(x) dsx, y ∈ R2

\ ∂D. (9)

e use the following properties of q(y).
i) q(y) satisfies the Helmholtz equation in the interior D (p. 39 of [19]).
ii) q(y) satisfies the Helmholtz equation in the exterior R2

\ D (p. 39 of [19]).
(iii) q(y) is analytic in both the interior and the exterior of ∂D (p. 46 and p. 72 of [18]).
(iv) q(y) is continuous across ∂D (p. 45 of [19]).
(v) The normal to ∂D derivative of q(y) satisfies the jump relation (p. 45 of [19])

lim
δ→0

[
∂q(y + νδ)

∂ν
−
∂q(y − νδ)

∂ν

]
= −g(y), almost everywhere on ∂D, (10)

in which the first (second) term denotes the interior (exterior) normal derivative.
(vi) q(y) satisfies the Sommerfeld radiation condition (8) at y = ∞ (p. 39 of [19]).

We now describe the problem we wish to solve.

3. Statement of problem; continuous version of MIASS-C

Our purpose is to develop a computational method for the following 2-D acoustic problem.
Let ∂D ∈ C2,α . With an e−iωt time dependence (ω > 0) assumed and suppressed, we seek a velocity potential

u(x) ∈ C2(D) ∩ C(D) that satisfies the interior Dirichlet problem

∆u(x) + k2u(x) = 0, x ∈ D; u(x) = f (x), x ∈ ∂D; Imk ≥ 0, (11)

here f (x) ∈ C(∂D) and k =
√
ω(ω + iγ )/c2, where γ > 0 and c > 0 are, respectively, the damping coefficient and

the speed of sound within D [22]. Throughout this paper, we assume that ∂D is non-resonant in the sense discussed in
Section 2.2. We call ∂D the physical closed curve.
3



Y.A. Eremin, G. Fikioris, N.L. Tsitsas et al. Journal of Computational and Applied Mathematics 386 (2021) 113231

T

f
f

i
c
(

f

E
T

n
n

Fig. 1. The considered 2-D interior Dirichlet problem. Shown are the physical closed curve ∂D together with an auxiliary closed curve ∂G used for
the application of MIASS-C.

3.1. Continuous version of MIASS-C

Now let G be a bounded and open region with boundary ∂G ∈ C2,α , which we assume throughout to be non-resonant.
We also assume that G ⫋ D, i.e. G is a proper subset of D; see Fig. 1. We call ∂G the auxiliary closed curve.

For any g(y) ∈ L2 (∂G) (we call g(y) the density), define ug (x) by means of the line integral

ug (x) =

∫
∂G

J0 (k|x − y|) g(y) dsy, x ∈ D. (12)

he function ug (x) is continuous for any L2-function g(y).
For any fixed y ∈ ∂G, the kernel J0 (k|x − y|) satisfies the Helmholtz equation (5) with respect to x ∈ D. Furthermore,

or any g(y), we can differentiate (12) under the integral sign. Therefore, ug (x) also satisfies the Helmholtz equation (5)
or any choice of g(y). Moreover, if the density g(y) is such that the integral equation∫

∂G
J0 (k|x − y|) g(y) dsy = f (x), x ∈ ∂D (13)

s satisfied, then ug (x) possesses the additional property of satisfying the boundary condition (7). Consequently, the
ontinuous function ug (x), defined via (12) and (13), is the unique continuous solution to our interior Dirichlet problem
11).

The process we just described – which can be called the continuous version of MIASS-C – consists of solving the linear,
irst-kind Fredholm integral equation (13) for the density g(y), and then finding ug (x) from (12).

The interpretation in terms of source-sinks (see Introduction) follows from the identity

J0 (k|x − y|) =
1
2

[
H (1)

0 (k|x − y|)+ H (2)
0 (k|x − y|)

]
, (14)

because, under the considered e−iωt time dependence, the first (second) Hankel function represents an outgoing (incom-
ing) wave, tantamount to a source (sink) located at y. In (14), the source–sink superposition is such that there is no
singularity when x = y. Eq. (12) thus seeks u(x) as a superposition of nonsingular source-sinks, each located at y ∈ ∂G
and weighted by g(y). By contrast, the continuous version of the MAS (i.e. the continuous version of the conventional
Method of Auxiliary Sources; see chapt. 5 of [1] and [23]) uses sources/Hankel functions (rather than source-sinks/Bessel
functions) and an exterior (rather than an interior) auxiliary closed curve.

3.2. Integral operator and its range

Let us define a linear operator K : L2 (∂G) → L2 (∂D) associated with the left-hand side of the integral equation (13),
so that

(Kg) (x) =

∫
∂G

J0 (k|x − y|) g(y) dsy. (15)

vidently (p. 300 and p. 352 of [24]), J0 (k|x − y|) is a Hilbert–Schmidt kernel and K is a Hilbert–Schmidt operator.
herefore (p. 353 of [24]), K is a compact operator.
In infinite-dimensional spaces, operator compactness has well-known consequences pertaining to existence, unique-

ess, and/or stability (see, e.g., pp. 36–37 and pp. 85–87 of [19]): A compact operator K may not be injective, or may
ot be surjective; even when K is invertible, the inverse K−1 (defined on the range R(K) of K) is necessarily unbounded
4
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(p. 336 of [24]); the range R(K) of a compact K is typically ‘‘small’’; and the associated first-kind Fredholm integral equation
s, for a given right-hand side, unlikely to have a solution.

In other words, given an L2-right-hand-side f (x), an L2-solution g(y) of the integral equation (13) will, in general, not
xist; cf. pp. 36–37 of [19]. For the K defined in (15), the question now arises: How ‘‘small’’ is R(K)? We can get an idea
y considering the special case where both G and D are circular discs. In this special case, K is a 2π-convolution operator
nd can be explicated using Fourier series as follows.
Let ∂D and ∂G be circles of radii b and a (b > a), respectively, and let x ∈ ∂D and y ∈ ∂G have polar coordinates (b, φx)

nd (a, φy), with 0 ≤ φx, φy < 2π . Since k|x − y| = k
√
a2 + b2 − 2ab cos(φx − φy) with |ka| < |kb|, we can apply the

ddition theorem (2) to the Bessel function appearing on the left-hand side of (15). If
∑

∞

m=−∞
gm exp(imφy) denotes the

ourier series of the φy-dependent function g(y), we see that (15) reduces to

(Kg) (x) = 2πa
∞∑

m=−∞

gmJm(ka)Jm(kb) exp(imφx). (16)

ecause of (3), the Fourier-series coefficients gmJm(ka)Jm(kb) of the φx-dependent function (Kg)(x) are much smaller than
m when |m| is large. Thus, any element (Kg) (x) belonging to R(K) possesses a Fourier series whose coefficients decay
uch more rapidly than those of g(y). Since g(y) is an arbitrary element of L2(∂G), the range R(K) is much smaller than

2(∂D). Note the intimate connection of the ‘‘smallness’’ to the rapidity of convergence of the series in the addition
heorem; note also that (3) can be used to accurately describe the range.

For the case of MIASS-C, actual numerical problems associated with the aforementioned general difficulties will be
escribed in Section 8. In the meantime, we proceed to show that R(K), however small, is dense.

. Integral operator of MIASS-C: Density of range

We now show that the compact (and thus bounded) linear operator K defined in (15) has a range that is dense in L2(∂D).
n our proof, an important role is played by a certain homogeneous Dirichlet problem involving the adjoint operator K∗.

heorem 1. Let G and D be non-resonant regions of R2 with ∂G ∈ C2,α , ∂D ∈ C2,α , and G ⊂ D. Let K : L2 (∂G) → L2 (∂D) be
he operator defined in (15). Then the range of K is dense in L2 (∂D).

Before proving the theorem, we observe it states that

R(K) = L2(∂D), (17)

here R(K) denotes the range of K and the overbar denotes set closure in L2(∂D). It equivalently states that we can find
g(y) ∈ L2(∂G) such that

∥(Kg) (x) − f (x)∥ < ϵ, (18)

or any given ϵ > 0 and f (x) ∈ L2(∂D), where ∥ · ∥ denotes the L2(∂D)-norm.

roof of Theorem 1. The equivalence of (17) and (18) follows from the definition of closure. Let K∗
: L2 (∂D) → L2 (∂G)

enote the adjoint operator of K [K∗ exists because K is defined on the entire space L2(∂G)]. For any linear and bounded
ilbert-space operator K, it is true (p. 320 of [24]) that

R(K) =
[
N

(
K∗

)]⊥
, (19)

here N(·) denotes the nullspace of an operator and the superscript ⊥ denotes the orthogonal complement in L2 (∂D).
ecause the orthogonal complement of {0} is the entire space L2(∂D), instead of (17) it suffices to prove that

N
(
K∗

)
= {0}. (20)

howing (20) is, in turn, tantamount to demonstrating that the assumption∫
∂D

J∗0 (k|x − y|) v(x) dsx = 0, y ∈ ∂G, v(x) ∈ L2(∂D) (21)

eads to the conclusion v(x) = 0 almost everywhere on ∂D. In (21), where the superscript ∗ denotes the complex conjugate
f a function, we used the well-known expression (p. 354 of [24]) for the adjoint of a Hilbert–Schmidt integral operator.
Let us extend the function on the left-hand side of (21) by assuming that k is the wavenumber of the entire space R2,

llowing y to be arbitrary, and defining

w(y) =

∫
J∗0 (k|x − y|) v(x) dsx, y ∈ R2. (22)
∂D

5



Y.A. Eremin, G. Fikioris, N.L. Tsitsas et al. Journal of Computational and Applied Mathematics 386 (2021) 113231

H
t

W

a

t

p
H

A

w

n

T
q

e
q
(

B
i

The function w(y) is continuous for any L2-function v(x). Since J∗0 (k|x − y|) satisfies the complex conjugate of the
elmholtz equation and since we can differentiate (22) under the integral sign, we see that w(y) everywhere satisfies
he same equation, viz.,

∆w(y) +
(
k∗

)2
w(y) = 0, y ∈ R2. (23)

ritten in terms of w(y), our hypothesis (21) is

w(y) = 0, y ∈ ∂G. (24)

Eq. (23) is satisfied, in particular, in the open and bounded region G. The interior boundary-value problem consisting
of (23) and (24) has the solution w(y) = 0. Since (in Section 3) we assumed that ∂G is non-resonant, Section 2.2 tells us
that this is the unique continuous solution.

Now any continuous solution to the Helmholtz equation that vanishes in an open subset of R2 must vanish identically
(p. 72 of [18]). Therefore w(y) = 0 for all y ∈ R2. By the definition (22), this means∫

∂D
J∗0 (k|x − y|) v(x) dsx = 0, y ∈ R2. (25)

Thus, (21) has now been shown to hold everywhere.
In the special case where y lies on a circle of arbitrary radius a, (25) and (2) give

∞∑
m=−∞

J∗m(ka)e
−imφy

∫
∂D

J∗m(krx)e
imφxv(rx, φx) dsx = 0, 0 ≤ φy < 2π, (26)

where (rx, φx) and (a, φy) are the polar coordinates of x and y, respectively, and where v(rx, φx) denotes v(x). If we further
ssume that a is such that

Jm(ka) ̸= 0, m ∈ N, (27)

hen the Fourier series in (26) can be zero only if∫
∂D

J∗m(krx)e
imφxv(rx, φx) dsx = 0, m ∈ N ∪ {0}. (28)

Consider a circular disc C of sufficiently large radius b; more precisely, require that C ⊃ D and that b > rx for all
oints (rx, φx) on ∂D. Suppose that (b, φy) are the polar coordinates of any point y on the circle ∂C . Multiply (28) by
(1)∗
m (kb)e−imφy and sum with respect to m to obtain

∞∑
m=−∞

H (1)∗
m (kb)e−imφy

∫
∂D

J∗m(krx)e
imφxv(rx, φx) dsx = 0, 0 ≤ φy < 2π. (29)

s b > rx, we can use the addition theorem (1) and then take the complex conjugate to get
i
4

∫
∂D

H (1)
0 (k|x − y|) v∗(x) dsx = 0, y ∈ ∂C, (30)

here the factor i
4 is chosen for convenience and where we re-introduced the notation v(x) [for v(rx, φx)].

We now extend the function on the left-hand side of (30) to the interior and exterior of the circle ∂C . We denote the
ew function by q(y), so that

q(y) =
i
4

∫
∂D

H (1)
0 (k|x − y|) v∗(x) dsx, y ∈ R2. (31)

he function q(y) is readily recognized (see Section 2.3) as the single-layer potential with density v∗(x). By Section 2.3(iv),
(y) is continuous across ∂D. Re-written in terms of q(y), (30) is the boundary condition

q(y) = 0, y ∈ ∂C . (32)

By Section 2.3(ii), q(y) satisfies the Helmholtz equation at all points exterior to ∂D and, in particular, at all points
xterior to the disc C (recall that D ⊂ C). Furthermore, q(y) satisfies the Sommerfeld radiation condition at y = ∞. As
(y) also satisfies the boundary condition (32), by uniqueness of continuous solutions to the exterior Dirichlet problem
Section 2.2) we have

q(y) = 0, y ∈ R2
\ C . (33)

y Section 2.3(iii) (i.e., analyticity), Eq. (33) can be extended to all points y ∈ R2
\ D. By Section 2.3(iv) (i.e., continuity),

t then follows that

q(y) = 0, y ∈ ∂D. (34)
6
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We now regard (34) as a boundary condition for the interior problem: By Section 2.3(i), the fact that ∂D is nonresonant
Section 3), and uniqueness of continuous solutions to the interior Dirichlet problem (Section 2.2), we have q(y) = 0 for
∈ D. We have thus shown

q(y) = 0, y ∈ R2. (35)

Finally, analyticity and the jump relation (Section 2.3(iii) and (v)) imply that the single-layer potential q(y) has a density
(x) that is zero almost everywhere on ∂D, which is the desired conclusion. This completes our proof of (17). □

. Discrete version of MIASS-C: Completeness

Let {y1, y2, . . .} be a countable and dense set of points on ∂G. Proceeding from the fact that the operator K of Section 4
s dense, we show that the discrete system of source-sinks

{J0 (k|x − ym|) , m = 1, 2, . . .}, x ∈ ∂D, (36)

s complete in the sense that there exists a finite subset that can generate the boundary data f (x) as closely as we desire.
ore precisely, we prove the following theorem.

heorem 2. Let G and D be non-resonant regions of R2 with ∂G ∈ C2,α , ∂D ∈ C2,α , and G ⊂ D. Let {y1, y2, . . .} be a countable
nd dense set of points on ∂G, so that {y1, y2, . . .} = ∂G. For any given ϵ > 0 and f (x) ∈ L2(∂D), there exist n ∈ N and
α1, α2, . . . , αn ∈ C such that

n∑
m=1

αmJ0 (k|x − ym|)− f (x)

 < ϵ, (37)

where ∥ · ∥ denotes the L2(∂D)-norm.

Proof. By Theorem 1 [more precisely, by its equivalent reformulation in (18)], we can find a g(y) ∈ L2(∂G) such that∫
∂G

J0 (k|x − y|) g(y) dsy − f (x)
 < ϵ

2
, (38)

here we used the explicit expression for (Kg) (x) provided in (15). For the integral appearing in (38), choose any
uadrature rule whose quadrature points are the given points y1, y2, . . . , yn, and let α1, α2, . . . , αn be the corresponding
uadrature weights. As long as our quadrature rule is convergent, we can find an n such that

∫
∂G

J0 (k|x − y|) g(y) dsy −

n∑
m=1

αmJ0 (k|x − ym|)

 < ϵ

2
. (39)

he desired inequality (37) now follows from (38), (39), and the triangle inequality. □

. Discrete version of MIASS-C: Linear independence

In Section 5, we saw that the set in (36), (i.e., the system of source-sinks) is complete. We now prove a theorem
f linear independence for that set. By the definition of a linearly-independent, countably-infinite set, this amounts to
howing that any finite subset is linearly independent:

heorem 3. Let G and D be non-resonant regions of R2 with ∂G ∈ C2,α , ∂D ∈ C2,α , and G ⊂ D. Let y1, y2, . . . , yn be n discrete
oints on ∂G. Then

n∑
m=1

cmJ0(k|x − ym|) = 0 for all x ∈ ∂D H⇒ c1 = c2 = · · · = cn = 0. (40)

Proof. Our proof is analogous to that of Theorem 1: Eq. (40) can be considered as a discrete analog of (21) (the roles of
∂G and ∂D, as well as the roles of x and y are interchanged, and there is no complex conjugate arising from an adjoint).
Reasoning as we did in Section 4, we define an extended function

wn(x) =

n∑
m=1

cmJ0(k|x − ym|), x ∈ R2, (41)

so that our hypothesis in (40) is

w (x) = 0, x ∈ ∂D. (42)
n

7
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Fig. 2. The considered 2-D interior Dirichlet problem. Shown are the physical closed curve ∂D together with an auxiliary open curve Γ used for
the application of MIASS-O.

The steps that gave (35) here lead to

qn(x) =
i
4

n∑
m=1

cmH
(1)
0 (k|x − ym|) = 0, x ∈ R2. (43)

Now allow x to approach any point yp, where p ∈ {1, 2, . . . , n}. The corresponding function H (1)
0 (k|x − yp|) grows without

imit, while the rest of the functions H (1)
0 (k|x − ym|) remain finite. Since the sum in (43) is zero, we must have cp = 0. We

have thus shown the desired conclusion c1 = c2 = · · · = cn = 0, meaning that (36) is a linearly independent set. □

Remark. The points y1, y2, . . . , yn ∈ ∂G of Theorem 3 are meant to stand for any n points within the dense set appearing
in (36). In other words, our statement of Theorem 3 keeps the same numbering of points as in (36), but actually remains
valid for any permutation of the points y1, y2, . . . , yn in (36).

7. Modifications for an open auxiliary curve; MIASS-O

This section concerns MIASS-O, which is our second version of MIASS. MIASS-O is obtained by modifying MIASS-C in
two ways, as illustrated in Fig. 2:
(i) We replace the auxiliary closed curve ∂G by an open curve Γ ;
(ii) We seek the solution as a superposition of source-sinks and source–sink derivatives, i.e., derivatives in the direction
normal to Γ . This amounts to looking for two unknown densities – which we call g(y) and h(y) – instead of only one
namely, the g(y) of Section 3.1).

More specifically, let Γ ∈ C2,α be an open curve lying entirely within D and let (g(y), h(y)) ∈ L2 (Γ ) × L2 (Γ ) be a
ensity pair. Similarly to (12), define the function ug,h(x) by means of the line integral

ug,h(x) =

∫
Γ

[
g(y) J0 (k|x − y|)+ h(y)

∂

∂ν
J0 (k|x − y|)

]
dsy, x ∈ D, (44)

here ∂
∂ν

=
∂

∂ν(y) denotes the normal to Γ derivative at any point y ∈ Γ (throughout this section, the two endpoints
of Γ are tacitly excluded), see Fig. 2. The continuous function ug,h(x) satisfies the Helmholtz equation. Satisfaction of the
oundary condition (7) amounts to finding a pair (g(y), h(y)) such that∫

Γ

[
g(y) J0 (k|x − y|)+ h(y)

∂

∂ν
J0 (k|x − y|)

]
dsy = f (x), x ∈ ∂D. (45)

e denote by L : L2 (Γ )× L2 (Γ ) → L2 (∂D) the linear and compact operator associated with the left-hand side of (45),
iz.,

(L(g, h)) (x) =

∫
Γ

[
g(y) J0 (k|x − y|)+ h(y)

∂

∂ν
J0 (k|x − y|)

]
dsy. (46)

he operator L, whose range belongs to the boundary ∂D, is analogous to the K of Section 3.2.

.1. Density of range

The theorem that follows states that L has a dense range and directly corresponds to Theorem 1. The proof is similar
o that of Theorem 1 in that the adjoint operator is involved; but the homogeneous boundary-value problem associated
ith the adjoint operator is Cauchy rather than Dirichlet.
8
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Theorem 4. Let D be a non-resonant region of R2 with ∂D ∈ C2,α , and let Γ ∈ C2,α be an open curve with Γ ⊂ D. Let
L : L2 (Γ )× L2 (Γ ) → L2 (∂D) be the operator defined in (46). Then the range of L is dense in L2 (∂D).

Proof. By analogy to (20), it suffices to show that

N
(
L∗

)
= {0}, (47)

where L∗
: L2 (∂D) → L2 (Γ )× L2 (Γ ) denotes the adjoint of L. This time, we must show that the pair of assumptions∫

∂D
v(x)J∗0 (k|x − y|) dsx = 0, y ∈ Γ , v(x) ∈ L2(∂D) (48)

and ∫
∂D
v(x)

∂

∂ν
J∗0 (k|x − y|) dsx = 0, y ∈ Γ , v(x) ∈ L2(∂D) (49)

eads to the conclusion v(x) = 0 almost everywhere on ∂D.
We extend the function on the left-hand side of (48) by allowing y to be arbitrary and defining

w(y) =

∫
∂D
v(x)J∗0 (k|x − y|) dsx, y ∈ R2, (50)

hich is a continuous function that everywhere satisfies the complex conjugate of the Helmholtz equation, viz.,

∆w(y) +
(
k∗

)2
w(y) = 0, y ∈ R2. (51)

ritten in terms of w(y), our two hypotheses (48) and (49) amount to

w(y) =
∂

∂ν
w(y) = 0, y ∈ Γ . (52)

Together, Eqs. (51) and (52) form a homogeneous Cauchy problem for the Helmholtz equation [24] which, within the
open region D, has the unique solution w(y) = 0. By analyticity of solutions to the Helmholtz equation, we have w(y) = 0
for all y ∈ R2. By the definition (50), this means∫

∂D
J∗0 (k|x − y|) v(x) dsx = 0, y ∈ R2, (53)

which is the same as (25) in the proof of Theorem 1. The remaining parts of that proof hold verbatim so that L (just like
K) has a range that is dense in L2(∂D). □

Remark. The assumption of having a non-resonant ∂G (which concerns MIASS-C, see Theorem 1) has no analogy in
MIASS-O and Theorem 4.

7.2. Completeness and linear independence

Let {y1, y2, . . .} be a countable and dense set of points on Γ . The discrete system to be used in MIASS-O [in place of
(36)] is

{J0 (k|x − ym|) , m = 1, 2, . . .} ∪ {
∂

∂ν
J0 (k|x − ym|) , m = 1, 2, . . .}, x ∈ ∂D, (54)

Since L has a dense range, the proof of Theorem 2 carries over to MIASS-O, so that the system is complete, just like the
one in Section 5. The system is also linearly independent, but the proof differs slightly from that in Section 6:

Theorem 5. Let D be a non-resonant region of R2 with ∂D ∈ C2,α , and let Γ ∈ C2,α be an open curve with Γ ⊂ D. Let
y1, y2, . . . , yn be n discrete points on Γ . Then

n∑
m=1

[
cmJ0(k|x − ym|) + dm

∂

∂ν
J0 (k|x − ym|)

]
= 0 for all x ∈ ∂D

H⇒ c1 = d1 = c2 = d2 = · · · = cn = dn = 0. (55)

roof. We begin as in the proof of Theorem 3. Here, the hypothesis in (55) leads to
n∑[

cmH
(1)
0 (k|x − ym|) + dm

∂

∂ν
H (1)

0 (k|x − ym|)
]

= 0, x ∈ R2. (56)

m=1

9
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The identity

∂

∂χ
H (1)

0

(
k
√
χ2 + ψ2

)
= −

kχ√
χ2 + ψ2

H (1)
1

(
k
√
χ2 + ψ2

)
, χ, ψ ∈ R (57)

hows that ∂
∂ν
H (1)

0 (k|x − ym|) tends to zero (or infinity) when x approaches ym from the normal (or tangential) to Γ
irection, respectively.
In (56), allowing x to approach any yp from the normal to Γ direction results in exactly one unbounded term, namely

cpH
(1)
0 (k|x − yp|) [all other terms remain bounded; in particular, (57) shows that ∂

∂ν
H (1)

0 (k|x − yp|) approaches zero]. The
act that the sum in (56) equals zero then implies cp = 0, so that c1 = c2 = · · · = cn = 0. Repeating this process – but
pproaching each yp from the tangential direction – leads to the further conclusion d1 = d2 = · · · = dn = 0. □

8. Implementation of MIASS; numerical results for elliptical cavity

To solve a given interior Dirichlet problem within a closed region D, we first choose a finite set of points, say
{y1, y2, . . . , yn}, located on the auxiliary curve, namely the closed curve ∂G when applying MIASS-C (cf. (36)), or the
open curve Γ in the case of MIASS-O (cf. (54)). Consequently, there are n unknowns in the case of MIASS-C, namely the
coefficients of the source-sinks/Bessel functions; and 2n unknowns in the case of MIASS-O, i.e. the coefficients of the
source-sinks together with those of the source–sink derivatives.

We then require our functions to approximately generate the continuous boundary data f (x) on ∂D. A straightforward
way of doing this is to sample the data at a number of matching points on ∂D equal to the number of unknowns, leading
to a square matrix (n × n for MIASS-C or (2n) × (2n) for MIASS-O) for the resulting system of linear equations. Another
straightforward way is to sample the data at N matching points on ∂D, where N is larger than the number (n or 2n) of
unknowns. We have found that this second choice may be quite beneficial from the point of view of numerics, an issue
we plan to discuss in more detail in a future paper.

In what follows, we show indicative numerical results using a square matrix (n × n) for MAS and MIASS-C and a
rectangular matrix [N × (2n), where N ≥ 2n] for MIASS-O. Note that, in the case of MIASS-O, the discrete-sources number
is equal to twice the number of source-sinks and, also, to twice the number of source–sink derivatives.

In the case of MIASS-C, the square matrix is

[J0 (k |xl − ym|)] , l,m = 1, . . . , n. (58)

Solving the n×n system yields the source–sink coefficients, which are denoted in this paper by I1, I2, . . . , In (this notation
facilitates a comparison with the MAS numerical results of [23]). Finally, the superposition

uC
n (x) =

n∑
m=1

ImJ0(k|x − ym|) (59)

gives the approximate solution of our boundary-value problem obtained via MIASS-C.
The procedure of MIASS-C just described amounts to two changes in the n×n system of the conventional MAS, namely

the replacement of the exterior to ∂D auxiliary curve by an interior one and, also, to the replacement – in both (58) and
(59) – of the Hankel functions H (1)

0 by Bessel functions J0.
In the case of MIASS-O, the rectangular matrix of the aforementioned overdetermined system is given by[

J0 (k |xl − ym|)

⏐⏐⏐⏐ ∂∂ν J0 (k |xl − ym|)

]
, l = 1, . . . ,N, m = 1, . . . , n (60)

where N > 2n. The equation corresponding to (59) is

uO
n (x) =

n∑
m=1

[
ImJ0(k|x − ym|) + Ĩm

∂

∂ν
J0(k|x − ym|)

]
. (61)

We now implement these two procedures, and present numerical results, for the case where ∂D is an ellipse with
semi-axes a and b. In the case of MIASS-C, the internal closed auxiliary curve ∂G is also an ellipse with semi-axes σa
and σb, where the scale factor σ satisfies 0 < σ < 1, ensuring G ⊂ D. The ellipses ∂D and ∂G are similar and have the
same eccentricity e =

√
1 − (b/a)2. The points xl along ∂D are chosen as follows: With ∂D described by the standard

π-periodic parametric representation,

x(t) = (χ (t), ψ(t)) ∈ R2, χ (t) = a cos t, ψ(t) = b sin t, 0 ≤ t ≤ 2π (62)

(so that χ and ψ are the coordinates along the major- and minor-semi-axes, respectively), our choice of points xl is

xl =

(
χ

(
2π l

)
, ψ

(
2π l

))
∈ R2, l = 1, 2, . . . , n. (63)
n n
10
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Fig. 3. Real (a) and imaginary (b) parts of the normalized MIASS-C auxiliary-source coefficients nIm/(4σkaE(e2)) (E is the complete elliptic integral
of the second kind) versus m; ka = 5, kb = 4.3 (e = 0.5103), kxfil = (3.5, 0), n = 24, and σ = 0.9. The last point (corresponding to m = 25 = n + 1,
and equaling the first point) is included for reasons of symmetry.

Our points ym are given by an analogous formula. To facilitate a comparison with [23], we take f (x) to be the velocity
potential generated by a line source (filament) located at xfil = (χfil, 0) ∈ R2 and generating the primary field
H (1)

0 (k|x − xfil|).
For the case ka = 5, kb = 4.3 (e = 0.5103), σ = 0.9, kxfil = (3.5, 0), and n = 24, the real and imaginary parts of the

intermediary quantities Im are shown in Figs. 3(a) and 3(b). We have normalized our results consistently with [25]. We
observe that
(i) the imaginary parts Im{Im} are much larger than the real parts Re{Im};
(ii) the imaginary parts oscillate (i.e., imaginary parts of adjacent Im have opposite signs and alternate between large
positive and negative values).

In the case of MIASS-O, the open auxiliary curve Γ is a line segment on the χ-axis hosting 2n = 26 functions in total,
namely n = 13 source-sinks/Bessel functions and n = 13 source–sink derivatives. The real and imaginary parts of Im and
Ĩm (for the same elliptical physical boundary ∂D) are depicted in Figs. 4(a), 4(b) and 5(a), 5(b), respectively. Both Im and
Ĩm behave in a manner similar to the Im of MIASS-C (see points (i) and (ii) above). Additionally, with the single exception
of Re{I } (m = 3), all values of Re{I } and Re{Ĩ } are very small.
3 m m

11
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Fig. 4. Like Fig. 3, but results obtained using MIASS-O with n = 13.

Oscillations in Im are also present in the conventional MAS. For the case of internal Dirichlet problems involving
ircular discs, this phenomenon is discussed in detail in [23] (see also [25] for extensions to more complicated shapes).
onsequently, the undesirable phenomenon of oscillations in the MAS continues to manifest itself in both MIASS-C and
IASS-O.
Numerical results, however, indicate that the oscillatory behaviors are fundamentally different. Figs. 6(a) and 6(b) are

orresponding figures for the case of conventional MAS. Two differences are apparent: Firstly, in MAS oscillations occur
n the real part rather than in the imaginary part. Secondly (and more importantly) oscillations occur mainly for small
nd large values of m, corresponding to those auxiliary sources that are closer to the primary excitation (which is on the
-axis). In MIASS, by contrast, all Im oscillate. For our MAS results in Fig. 6, we chose the values of n and σ (σ > 1 in
he case of MAS) so as to obtain roughly the same matrix (2-norm) condition number as in MIASS-C (where a square
inear system is involved). Both condition numbers are of the order of 1010, which is large but manageable for most
xisting computational platforms. For the present computations, we used the MATLAB R2019a® programming language
nd obtained the same results by using different numerical solvers. We thus concluded that, for the considered parameter
alues, no roundoff/matrix ill-conditioning effects are encountered.
For the case of MAS and MIASS-C, we further calculated the associated boundary errors, i.e., the velocity potential vn(x)

n the boundary minus the given boundary data, which is theoretically supposed to be zero. As expected, one sees very
12
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s

Fig. 5. Like Fig. 3, but results obtained using MIASS-O with n = 13.

mall (of the order of 10−12 to 10−13) and noisy values. Thus, these results independently support the aforementioned
conclusion that the large condition numbers are unimportant. Furthermore, MIASS-C gives values of the same order of
magnitude with MAS, even if, in MIASS-C, the value of n is smaller (24 vs. 64).

While the aforementioned boundary errors demonstrate an advantage of MIASS-C over MAS for the particular case
studied, the aforementioned comparisons between MAS, MIASS-C and MIASS-O should be considered preliminary. A fair
comparison should, among other factors, take into account: the particular given boundary data (if, for example, the data
is generated by a line source, it is known from [23] that the position of the line source greatly affects the oscillations and
the condition numbers in the MAS); the placement and number of the matching points, especially when the boundary
∂D is not smooth; the position and shape of the various auxiliary curves; our remark concerning the number of matching
points vs. the number of discrete-source points, etc. We have certainly not made optimum choices and depending on the
problem, each method can be expected to have its own advantages and drawbacks.

We finally turn to the velocity potential un(x). Figs. 7(a) and 7(b) compares the MIASS-C, MIASS-O and MAS results at
observation points lying on an ellipse with a scale factor σ = 0.8. At the scale of Figs. 7(a) and 7(b), the three sets of
results coincide. Thus, despite the oscillations and the large condition numbers, we obtain the same results. Via additional
13



Y.A. Eremin, G. Fikioris, N.L. Tsitsas et al. Journal of Computational and Applied Mathematics 386 (2021) 113231

e
p

9

S
(
w
(
i
(
s
(
P
c

Fig. 6. Like Fig. 3, but results obtained using MAS with n = 64 and σ = 2.

xtensive numerical tests, we found that this was always true (except for cases where the condition numbers become
rohibitively large).

. Future work

This work discussed fundamental aspects of two versions (MIASS-C and MIASS-O) of the Method of Internal Auxiliary
ource–Sinks (MIASS), including the relations of MIASS to other methods, especially to the Method of Auxiliary Sources
MAS). We believe that MIASS (or extensions) will prove useful for a number of problems involving interior regions. Future
ork will include:
i) Extensions of both versions of MIASS to the 2-D transmission problem, including proofs of completeness and linear
ndependence.
ii) More detailed studies of the oscillatory behavior discussed in Section 8. For the case of MAS, [23] carries out such
tudies by analytically examining the MAS solution for the simple case where ∂D and ∂G are circular discs. These studies
see also ch. 5 of [1], which refers to exterior problems) help us better understand more complicated geometries [25].
reliminary findings indicate that the methods of [23] carry over to the case of MIASS-C, facilitating more detailed
omparisons of MIASS-C to MAS.
14
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Fig. 7. Real (a) and imaginary (b) acoustic field un(x) computed from the Im of Figs. 3, 4, 5, and 6 at observation points x lying on an ellipse with
= 0.8. Results are shown as a function of t , which is the parameter in (62).
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