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ABSTRACT

Shooting video in 3D format can introduce stereoscopic arti-
facts, potentially causing viewers visual discomfort. In this
work, we consider three common stereoscopic artifacts: color
mismatch, sharpness mismatch, and geometric distortion. This
paper introduces two neural-network-based methods for simul-
taneous color- and sharpness-mismatch estimation, as well as
for estimating geometric distortions. To train these networks
we prepared large datasets based on frames from full-length
stereoscopic movies and compared the results with methods
that previously served in analyses of full-length stereoscopic
movies. We used our proposed methods to analyze 100 videos
in VR180 format—a new format for stereoscopic videos in vir-
tual reality (VR). This work presents overall results for these
videos along with several examples of detected problems.

Index Terms— objective quality assessment, color mis-
match, sharpness mismatch, geometric distortions, stereo-
scopic video, vr180, deep learning

1. INTRODUCTION

Stereoscopic videos are now widespread and familiar to al-
most everyone. When watching them, viewers experience the
illusion of a three-dimensional image, achieved by showing
two video sequences, the so-called left and right views, one to
each eye. Another format that is even more immersive than
plain 3D video is 360-degree or spherical video; the greatest
immersion comes through the use of dedicated head-mounted
displays or VR headsets. When watching 360-degree video,
the viewer sees only part of the sphere corresponding to the
current viewing direction. Additionally, spherical videos can
also be stereoscopic by showing a separate video sequence
to each eye: left and right views, similar to the usual stereo-
scopic video format. VR headsets enable viewers to watch
these videos.

Creation of spherical videos usually involves a special rig
of multiple cameras that simultaneously film different but over-
lapping views around the viewing point. Stitching algorithms
can later merge these views into one 360-degree video. This
approach, however, introduces quality problems in the final
video, depending on the quality of the stitching and calibra-
tion of the cameras. Moreover, the main action in spherical

videos usually occurs on one side of the sphere, but the device
receives the entire stream, leading to transmission and storage
of redundant information. To address these issues, Google
in 2018 introduced a new VR video format, VR180 [1], that
achieves stereoscopy by projecting one view on a hemisphere
and the other view on the remaining hemisphere. Instead of
using a rig of multiple cameras to shoot a video, VR180 only
requires two cameras with fisheye lenses, similar to conven-
tional 3D. This approach reduces the cost of the final device
considerably. At the same time, it greatly simplifies the shoot-
ing technique, since all conventional-camera methods remain
applicable (except the result is potentially more spectacular
and immersive). All in all, VR180 provides an even more
immersive experience than 360-degree video, is cheaper to
produce, is easier to shoot, and has no stitching problems.

But as with conventional stereoscopic format, VR180 suf-
fers from stereoscopy-related problems specific to 3D shooting,
also known as stereoscopic artifacts. These artifacts can cause
viewer discomfort, from fatigue and eyestrain to headaches
[2], that if unfixed can decrease the popularity of and demand
for stereoscopic VR. In this work, we consider the most com-
mon stereoscopic artifacts for 3D shooting: color, sharpness,
and geometry mismatches between stereoscopic views. They
appear when the cameras are configured differently, a compo-
nent of one camera is damaged, or both. Stereoscopic videos
produced using conversion or computer graphics avoid such
problems, so more and more stereoscopic-movie makers are
moving away from 3D shooting in favor of 2D-to-3D conver-
sion.

The novel aspects of this work include neural-network-
based methods for simultaneous color- and sharpness-mismatch
estimation, as well as geometry-mismatch estimation in stereo-
scopic videos, including VR180; and an objective quality
assessment of 100 VR180 videos from YouTube using our
proposed methods, revealing their overall low quality.

The rest of the paper is organized as follows. Section 2
presents the state of stereoscopic-video-quality assessment.
Section 3 describes our proposed neural-network-based meth-
ods for simultaneous color- and sharpness-mismatch detection,
and Section 4 describes geometry-mismatch detection. In Sec-
tion 5 we present experimental results for objective quality
assessment of 100 VR180 videos. Finally, Section 6 summa-
rizes the paper.



2. RELATED WORK

In general, evaluating distortions usually requires view match-
ing followed by analysis of the corresponding pixels. Ap-
proaches without stereo matching are also possible, however.
For color-mismatch detection, Winkler [3] calculated the Pear-
son correlation of histograms for two views in the HSV color
space, but this approach is incapable of localizing color dis-
tortions. A similar approach described by Dong et al. [4]
introduces a simple global color-mismatch measure. Those
authors also evaluated geometric distortions using sparse SIFT
[5] matching. To evaluate the vertical shift, this technique ana-
lyzes the histogram of vertical vector components; to estimate
the zoom, it uses the scaling of matched points from SIFT;
and to estimate the rotation, it chooses the rotation angle that
minimizes the difference between the rotated left view and the
original right view.

The problem of evaluating sharpness mismatch caused
by focal-distance variation between cameras was previously
considered by Devernay et. al. [6]. The authors assumed
the input stereopair is rectified, and they only used horizon-
tal pixel matching to compute a dense disparity map. Their
technique employs sum of modified Laplacian to obtain per-
pixel estimates of sharpness mismatch and fits them to a model
that relates sharpness differences between views to disparity
values. Liu et al. [7] proposed a different approach that ana-
lyzes width deviations of corresponding edge pairs between
stereoscopic views. These approaches, however, avoid directly
measuring the sharpness-mismatch magnitude and produce
only five possible values in the case of Devernay and only an
overall sharpness-mismatch probability in the case of Liu.

Any model-fitting method can enable geometric-distortion
estimates on the basis of matching results–—for example,
RANSAC [8] and its modifications [9, 10]. A slightly differ-
ent proposal appears in [11, 12], using a neural network to
compute correspondence weights before evaluating the model.
It can serve as an additional step to better filter the acquired
correspondences between stereoscopic views. Rocco et al.
[13] propose replacing the stereo-matching step by calculating
the full correlation of two feature maps that neural networks
have extracted from the views. After completely matching the
feature maps, the authors add a regression neural network that
predicts an affine-transformation matrix to match the left and
right views. A variation of this algorithm involves training
a regression network to predict a matrix of completely arbi-
trary geometric transformations. In further work, Rocco et al.
[14] additionally proposed estimating the matrix of projective
transformations.

This effort starts from the ideas of the VQMT3D project
[15] for objective quality assessment of stereoscopic video.
Here, we build on our previous methods from this project,
which are based on the standard pipeline of stereoscopic-
view matching and artifact evaluation. The color-mismatch-
detection method evaluates color differences between corre-

Fig. 1: A left view with generated color and sharpness distor-
tions and an interpolated right view. The scene is from Captain
America: The First Avenger.

sponding pixels, the sharpness-mismatch-detection method
evaluates blur differences in the frequency domain, and the
geometry-mismatch-detection method evaluates an affine trans-
formation using RANSAC. We employed these techniques to
evaluate more than 100 stereoscopic movies. Unlike previous
approaches from the VQMT3D project, the main idea of our
proposal in this work is to use neural networks to directly
predict the distortion between stereoscopic views.

3. NEURAL-NETWORK-BASED METHOD FOR
COLOR- AND SHARPNESS-MISMATCH

ESTIMATION

Color and sharpness distortions are extremely common in
stereoscopic videos made by shooting native 3D, both conven-
tional stereoscopic and VR180 format since they use the same
methods. These distortions are typical for systems consisting
of two cameras. The slightest inconsistency in the camera
settings, malfunction of one camera, or both can produce these
artifacts.

In this work, we consider the problem of simultaneously
detecting color and sharpness mismatch between stereoscopic-
video views. Both of these artifacts lead to brightness and/or
color differences between the views, so when using separate
algorithms to detect them, numerous false positives can occur.

3.1. Color- and sharpness-mismatch model and dataset
generation

Let Lgt and Rgt respectively denote the left and right views
of a stereopair that lacks color and sharpness mismatches. We
consider images in the YUV color space. To model color and
sharpness artifacts, we modify undistorted frames as follows:

Lc(x, y) = ac(x, y)× (G(σpos(x, y))∗Lgtc )(x, y)+bc(x, y),

Rc(x, y) = (G(σneg(x, y)) ∗Rgtc )(x, y),

where L and R are the resulting distorted left and right views;
c is a color channel in the YUV color space; ac(x, y) and
bc(x, y) are the linear and constant coefficients, respectively,
for modeling color distortions (generated using Perlin noise
for each pixel with coordinates (x, y)); G(σ(x, y)) is an 11×
11 Gaussian kernel; σ(x, y) is the standard deviation of the



Gaussian distribution (generated using Perlin noise for each
pixel with coordinates (x, y)) that sets the blur strength for
G(σ(x, y)); σpos and σneg are the generated standard-deviation
matrices containing positive numbers and the absolute value
of negative numbers, respectively, from the standard-deviation
matrix σ(x, y), with zeros in the remaining entries; and ∗
is the convolution operator. We use a linear model of color
distortions, which we only added to the left view (enough to
obtain a color difference between the stereoscopic views). We
also use a Gaussian blur with a strength that varies from pixel
to pixel in order to model sharpness distortions, applying it
either to the left or right view. To generate the coefficients for
the linear model and the matrix of standard deviations for the
Gaussian blur, our approach employs Perlin gradient noise,
allowing us to set a continuous distortion-strength change that
depends on the pixel coordinates. This technique enables us to
produce complex artifacts corresponding to uneven heating of
the camera sensors in the case of color distortions, as well as
different objects being in focus in different views in the case
of sharpness distortions.

Additionally, we use a simple constant distortion model
that changes the original stereopair similarly for each pixel:

Lc = ac × (G(σpos) ∗ Lgtc ) + bc,

Rc = G(σneg) ∗Rgtc ,

where the parameters ac, bc, σpos, and σneg are constant for
a stereopair and are independent of pixel coordinates. Either
σpos or σneg is equal to zero, so only one of the two views is
blurred. This model corresponds to simpler variations of color
and sharpness distortions.

To generate datasets based on the models described above,
we gathered 9,488 stereopairs of size 960× 540 without color
or sharpness distortions (this group included only stereopairs
with near-zero distortion estimates from the corresponding
VQMT3D methods [15]). The frames were from 16 stereo-
scopic movies, comprising films produced by 3D shooting
as well as by 2D-to-3D conversion and computer graphics.
When preparing the dataset, we considered cases with and
without color distortions as well as with and without sharpness
distortions. Generation of the resulting stereopairs randomly
employed one of the two models presented above. Figure 1
shows an example with distortions added.

3.2. Neural-network-based method

To estimate color and sharpness differences between stereo-
scopic views, we propose a neural-network-based method.
The first step is to compute a disparity map using fast local
block matching [16]. Since the result can contain errors, we
construct a corresponding confidence map based on the LRC
criterion [17] and block RGB variance.

Furthermore, the neural network takes as input the orig-
inal left view; the right view, interpolated according to the

Fig. 2: General scheme of the proposed method for detecting
color and sharpness mismatch between stereoscopic views.

Fig. 3: Architecture of the GridNet network.

computed disparity map; and the corresponding confidence
map. The left and right views are both in the YUV color
space. These inputs are concatenated before being fed to the
network, which simultaneously predicts color-difference maps
between stereoscopic views and a blur map corresponding
to the standard-deviation matrix by which the Gaussian ker-
nel specified the distortion strength during dataset generation.
Figure 2 shows the general scheme of the proposed method.

The final score for a stereopair’s color mismatch, mc, and
sharpness mismatch, md, is based on the predicted difference
maps:

mc =

∑n
i=1 confi × (ĉYi + ĉUi + ĉVi )

3
∑n
i=1 confi

,

md =

∑n
i=1 confi × d̂i∑n
i=1 confi

,

where ĉ is the predicted color-difference map for each YUV
color channel, d̂ is the predicted blur map, conf is the disparity
confidence map that serves as the input confidence map for the
neural network, and n is the number of pixels in the image.

We employed the modified GridNet convolutional neural
network [18], a variation of the encoder-decoder architecture,
to predict color- and sharpness-difference maps. This archi-
tecture substantially reduces the network size relative to a
standard encoder-decoder, and it also increases the prediction
accuracy thanks to a feature-map stream with full spatial reso-
lution. In total, GridNet has three block types: one horizontal
for sequentially processing feature maps of one resolution,
and two vertical for decreasing and increasing the feature-map
resolution as well as for transmitting them to downstream and
upstream flows, respectively. We used the same block configu-
ration as in [18]. After the last horizontal block, two parallel
convolutional layers predict color- and sharpness-difference
maps. Figure 3 illustrates the overall network architecture.



Table 1: Test results for estimating color and sharpness mis-
matches between stereoscopic views on the prepared Sintel
dataset.

Method PCC SROCC
Color mismatch

MAE 0.1254 0.1626
MAE with right view interpolation 0.1338 0.2039
Winkler [3] -0.4430 -0.4093
VQMT3D [15] 0.8136 0.8760
Proposed method 0.9696 0.9602

Sharpness mismatch
MAE 0.1482 0.2635
MAE with right view interpolation 0.2683 0.3505
VQMT3D [15] 0.7686 0.6815
Proposed method 0.9762 0.9078

3.3. Neural-network training

To train neural networks we used a dataset based on the previ-
ously described distortion model. Our basic loss function for
predicting both color- and sharpness-difference maps was the
sum of squared differences between the predicted and ground-
truth values, weighted by the disparity-map confidence:

Lc(ĉ, c) =

∑n
i=1 confi × ((ĉYi − c

Y
i )2 + (ĉUi − c

U
i )2 + (ĉVi − c

V
i )2)

3
∑n
i=1 confi

,

Ld(d̂, d) =

∑n
i=1 confi × (d̂i − di)2∑n

i=1 confi
,

where ĉ and c are the predicted and ground-truth color-difference
maps, respectively, for each YUV color channel; d̂ and d are
the predicted and ground-truth blur maps, respectively; conf is
the input disparity confidence map for the neural network; and
n is the number of pixels in the image. Additionally, we used
L2-regularization with the regularization parameter 10−2. The
final loss function is the following:

L(ĉ, c, d̂, d, θ) = Lc(ĉ, c) + Ld(d̂, d) + L2(θ),

where θ is the vector of neural-network weights.
We used the Xavier initialization method [19] to initial-

ize the convolutional-layer weights before training and chose
Adam [20] as an optimization method. The neural-network
training took place over 100 epochs. We set the learning rate
to 10−4, decreasing it by a factor of 10 every 40 epochs. The
batch size was 8, and the resolution of the training examples
was 256×256. Our approach randomly cut out image sections
of this size from the full images during training. Also, to fur-
ther augment the data, we used random horizontal or vertical
image reflection as well as normally distributed noise with a
standard deviation of 0.02 and zero mean.

3.4. Model evaluation

To test the proposed method, we prepared a dataset based on
Sintel [21], which contains 23 stereoscopic-video sequences

with a resolution of 1024×436, as well as ground-truth optical-
flow and disparity values for each frame. The original video
sequences lack any color or sharpness distortions, as they were
obtained using computer graphics. To prepare a test dataset,
we added to each sequence artificial distortions based on the
aforementioned general distortion model. Every sequence
appeared three times in the test set, each with added distortions
of different types and/or strengths. Using this prepared dataset,
we evaluated our proposed method, several simple methods,
as well as corresponding methods from the VQMT3D project
[15]. Table 1 presents the results. Our proposed method is
superior to previous methods from the VQMT3D project both
in Pearson correlation and Spearman correlation.

4. NEURAL-NETWORK-BASED METHOD FOR
GEOMETRY-MISMATCH ESTIMATION

Geometric distortions between stereoscopic views often occur
in 3D shooting. The most common types include vertical shift,
rotation, and scaling. Geometry mismatch can occur because
of incorrect camera calibration as well as slightly inconsistent
tilting or vertical positioning of the cameras. Stereoscopic-
video production often overlooks quality control, causing such
artifacts to appear in movies and in videos on popular shar-
ing platforms. When watching them, viewers may experience
discomfort. We therefore propose a neural-network-based
algorithm for detecting the abovementioned geometry distor-
tions.

4.1. Geometry-mismatch model and dataset preparation

Application of an affine transformation to one view is suf-
ficient to model the geometric distortions described above.
Let p =

[
x y 1

]T
and p′ =

[
x′ y′ 1

]T
denote the ho-

mogeneous coordinates of two points before and after the
transformation, respectively. We then model the geometry
mismatch between stereoscopic views through the following
affine transformation:

p′ = A× p,

A =

(1 + k) cos(α) −(1 + k) sin(α) 0
(1 + k) sin(α) (1 + k) cos(α) t

0 0 1

 ,
where α is the rotation angle, k is the scaling coefficient, and
t is the vertical shift. We therefore consider the problem of
estimating the parameters θ =

[
α k t

]
.

On the basis of this model, we prepared a dataset using
frames from 39 3D movies. Among them there were films
produced by 3D shooting and films produced by 2D-to-3D con-
version. Since geometric distortions between views in a stereo-
scopic movie have no ground-truth values, we evaluated them
using the VQMT3D project’s geometric-distortion-detection



Fig. 4: Distributions of and computed standard deviations for
the geometric distortions for thirty-nine 3D movies.

Fig. 5: General scheme of proposed method for detecting
geometry mismatch between stereoscopic views.

algorithm [15]. This method also evaluates geometric distor-
tions in terms of rotation, scaling, and vertical shift of one
view relative to the other. Figure 4 shows distributions of the
corresponding distortions for all analyzed films. We computed
the standard deviation for each distortion type and gathered
stereopairs for which all three of these parameters had abso-
lute values less than σ

10 . We selected frames with a certain
step to avoid duplicating scenes in the dataset. In total, we
extracted 22800 stereo pairs. We distorted each stereopair by
applying the affine transformation to one view, using random
parameters generated from a normal distribution with zero
mean and a standard deviation five times larger than that of the
estimated distribution (Figure 4). This choice for the standard
deviation expanded the coverage of possible distortion values
in the films.

4.2. Neural-network-based method

Our proposed method for estimating geometry mismatch con-
sists of two main steps: stereo matching with confidence esti-
mation and neural-network prediction of geometric distortions
(Figure 5). We use the same disparity- and confidence-map-
estimation approach as we did in our method for simultane-
ously detecting color and sharpness mismatch.

To estimate the geometry-mismatch parameters we employ
a neural-network architecture, similar to ResNet-18 [22]. We
put four residual blocks between every increase in channel
size and do not use batch normalization [23]. Besides, the
final layer produces a vector of length three, containing the
parameters of the predicted geometric distortions. The neural
network’s inputs are the disparity map and corresponding con-
fidence map. The spatial dimensions of the input tensor are
arbitrary—the last block produces a fixed-size vector using a
global-average-pooling layer at the end.

4.3. Neural-network training

We used the following loss function to train the neural network:

L(θ, θgt, θb) = LSE(θ, θgt) + LGrid(θ, θgt) + LSiam(θ, θb),

where θ is the neural network’s prediciton based on the dis-
parity and confidence maps for the left view, θgt is the vector
of ground-truth distortion parameters, and θb is the neural net-
work’s prediction based on the disparity and confidence maps
for the right view. The proposed loss function includes three
main terms.

The first term, LSE , is the squared difference between
the predicted and ground-truth distortion parameters, with
empirically chosen weights for each distortion type:

LSE(θ, θgt) = w
α
SE (α− αgt)2 + w

k
SE (k − kgt)2 + w

t
SE (t− tgt)2 ,

where wαSE = 1, wkSE = 104, and wtSE = 104.
The second term, LGrid, is the loss between two grids

transformed using the predicted and ground-truth affine trans-
formations. Let G ∈ RH×W×3 denote homogeneous coor-
dinates of points on the plane. We chose H = W = 21
and selected points from the square [−1; 1] × [−1; 1] with a
step h = 0.1. To calculate this term, we decomposed the pa-
rameter vector into three separate vectors: θα =

[
α 0 0

]
,

θk =
[
0 k 0

]
, and θt =

[
0 0 t

]
. Next, we sequentially

applied each affine transformation T to the original grid G
using the predicted parameters, as well as the ground-truth
parameters, to generate new grids corresponding to each geo-
metric distortion:

Gα = T (G, θα), Gαgt = T (G, θαgt),

Gk = T (Gα, θk), Gkgt = T (Gαgt, θ
k
gt),

Gt = T (Gk, θt), Gtgt = T (Gkgt, θ
t
gt).

The mean squared error between corresponding grids and the
weighted sum of these errors form the second loss term:

LGrid = wαGridMSE(Gα, Gαgt) + wkGridMSE(Gk, Gkgt)

+ wtGridMSE(Gt, Gtgt),

where wαGrid = 5, 000, wkGrid = 3, 000, and wtGrid = 3, 000.
Finally, the last term measures the consistency between the

neural network’s predictions of the disparity and confidence
maps for the left and right views. If the predictions are correct,
the network should yield the same distortion-parameter values
for the left view if we feed it disparity and confidence maps
for the right view, except with opposite sign. In other words,
θ = −1 · θb. So the third loss term penalizes the difference
between the predicted vectors:

LSiam(θ, θb) = LSE(θ,−1 · θb).

To calculate this term, we additionally predict the distortion
parameters θb using right-view data during training. But during



Table 2: Absolute error for each geometric distortion.

Method Rotation
angle

Scaling
coefficient

Vertical
shift

No model 0.63406 0.6507 0.57497
Yi et al. [11] 0.05115 0.10810 0.19109
Rocco et al. [13] 0.43735 1.23582 0.82534
VQMT3D [15] 0.01158 0.02622 0.02004
Proposed method 0.01029 0.02071 0.00947

inference, disparity and confidence maps for the left view are
sufficient to evaluate geometric distortions in the stereopair.

We used the He initialization method [24] to initialize
weights and trained the neural network using the Adam op-
timizer [20]. Our approach employed standard parameters,
except for the learning-rate coefficient, which was 10−4. We
trained the model over 120 epochs.

4.4. Model evaluation

We compared our method with the neural-network-based algo-
rithms Rocco et al. [13] and Yi et al. [11], as well as with the
previous version from the VQMT3D project [15]. We trained
both neural-network-based analogs on the training part of our
dataset. Testing for all methods employed the testing part of
our dataset. Table 2 presents the results. It contains mean
values of the absolute error for each of the three geometric-
transformation parameters. “No model” predicts zero for each
geometric distortion.

5. ANALYSIS OF VR180 VIDEOS

To create the VR180 dataset, we simulated search queries on
YouTube with the filter set to VR180 video. To make the selec-
tion unbiased, we retrieved video IDs from the first one or two
pages using a total of 36 nonempty search queries: 26 English
letters plus 10 digits, one by one, leading to about 200 links
to YouTube VR180-video pages. We excluded some of the
videos (for being unavailable, poor in resolution, or nonstereo-
scopic) and selected older and more-popular videos for the
dataset. The result was 100 VR180 videos in 4K resolution.

All VR180 video frames initially appear in an equirect-
angular projection. The preprocessing step remaps them into
a cubemap projection. The algorithm chooses the front edge
of the resulting cubemap projection because it contains more
information than the other blocks. Besides, after this trans-
formation, the views will not contain artifacts that appeared
on the equirectangular projection closer to the image poles.
Furthermore, we processed the views in the same way we
processed the stereoscopic frames.

We processed all 100 samples and found that VR180
videos contain many artifacts. Figure 6 presents several exam-
ple artifacts. The overall charts show average metric values
relative to VR180-video release date (Figure 7) and view count

(Figure 8) on YouTube. According to the results, VR180’s
technical quality is terrible. Distortions even increase with
time, and they are almost uncorrelated with video popular-
ity, meaning people continue to watch poor-quality VR180
content and no one corrects the problems. This situation in-
dicates a need to develop correction tools to improve VR180
stereoscopic quality.

6. CONCLUSION

In this paper we proposed two novel neural-network-based
methods for simultaneous color- and sharpness-mismatch es-
timation, as well as for geometric-distortion estimation. Our
methods exhibited a significant quality increase relative to
previous versions from the VQMT3D project. We used these
methods to analyze 100 VR180 videos gathered from YouTube,
revealing the overall bad quality of current VR180 videos,
which tend to exhibit at least one of the problems we described.

We plan to continue improving the objective quality met-
rics from the VQMT3D project using neural-network-based
approaches in addition to developing correction algorithms for
the artifacts we describe herein. Improvements in this area
can simplify the detection and correction of all stereoscopic
artifacts, increasing the final product’s quality and potentially
leading to another wave of interest in S3D.

We plan to soon publish a report describing a more thor-
ough analysis of VR180 videos. This effort will expand
our VR180 dataset to 1,000 videos and will include other
stereoscopic artifacts specific to 3D shooting. The report
will be available on the main VQMT3D project page: http:
//videoprocessing.ml/stereo_quality/.
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