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The X-ray binary Her X-1 consists of an accreting neutron star and the optical component HZ
Her. The 35-day X-ray variability of this system is known since its discovery in 1972 by the
UHURU satellite and is believed to be caused by precession of the warped accretion disk tilted
to the orbital plane. We assume that the neutron star undergoes free precession and argue that the
optical variability of HZ Her can be explained by forced precession of the accretion disk with a
similar period as that of the neutron star. The model parameters include a) the intensity (power) of
the stream of matter flowing out of the optical star; b) the X-ray luminosity of the neutron star; c)
the optical flux of the accretion disk; d) the X-ray irradiation pattern on the donor star; e) the tilt
of the inner and outer edge of the accretion disk. A possible synchronization mechanism based on
the coupling between the neutron star free precession and the dynamical action of non-stationary
gas streams is discussed.

Accretion Processes in Cosmic Sources — II - APCS2018
3–8 September 2018
Saint Petersburg, Russian Federation

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:nikolai.shakura@gmail.com
mailto:kolesnikovkda@gmail.com


P
o
S
(
A
P
C
S
2
0
1
8
)
0
4
7

35 day cycle of Her X-1 Nikolay Shakura

1. Introduction

HZ Her / Her X-1 is an intermediate mass X-ray binary consisting of a 1.8−2.0 M� evolved
sub-giant star and a 1.0− 1.5 M� neutron star observed as X-ray pulsar [1]. The binary orbital
period is 1.7 days, the X-ray pulsar spin period is 1.24 seconds. The optical star fills its Roche lobe
and an accretion disk is formed around the neutron star. Due to X-ray irradiation, the optical flux
from HZ Her is strongly modulated with the orbital period, being first found by the inspection of
archive photo-plates [2]. (Note that before X-ray observations, HZ Her was classified as irregular
variable).

The X-ray flux curve of Her X-1 is modulated by a 35 day period. Most of the 35-day cycles
lasts 20.0, 20.5 or 21.0 orbital periods (see, e.g., [3],[4],[5]). The 35-day X-ray cycle consists of a
“main-on” of seven orbital periods and a “short-on” of five orbital periods, separated by two “off-
states” of four orbital cycles each, during which the X-ray flux switches off almost completely. The
X-ray observations are well explained by the precessing accretion disk.

Figure 1: RXTE/ASM light curves of the 35-day X-ray cycle [4]. The vertical lines show eclipses of the
X-ray source by the donor star. Top: the “main opening” (also called “turn-on”) near orbital phase 0.7.
Bottom: the “main opening” near orbital phase 0.2.

2. 35-day cycle

The 35-day cycle turn-ons most frequently occur at the orbital phases ∼ 0.2 or ∼ 0.7, which
is due to the tidal nutation of the outer parts of the disk with the double orbital frequency when the
angle between the line of sight and the outer parts of the disk changes most rapidly [6], [7], [8].
The 35-day cycle of Her X-1 is explained by the precession of the accretion disk, precessing in the
opposite direction of the orbital motion [9], [10]. Soon after the discovery of the X-ray pulsar, NS
free precession was suggested to explain the observed 35-day modulation [11]. Later on, EXOSAT
observations of the evolution of the X-ray pulse profiles of Her X-1 were also interpreted by free
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precession of the NS [12]. Extensive studies of Her X-1 suggested a warped tilted accretion disk
around the NS. Its retrograde precession results in consecutive openings and eclipses of the central
X-ray source [8]. The X-ray light curve is asymmetrical between the eclipses due to the scattering
of the X-ray radiation in a hot rarefied corona above the disk. Indeed, the X-ray “turn-on” at
the beginning of the “main-on” state is accompanied by a significant lack of the soft X-ray flux
because of strong absorption. There is no essential spectral change during the X-ray flux increase,
suggesting photon scattering on free electrons of the hot corona near the disk inner edge [13],
[14], [15], [16]. The X-ray pulse profiles are observed to vary with 35-day phase [12]], [17], [18],
[19] changing significantly during the main-on and the short-on. Such changes are difficult to
explain using the precessing disk only. The X-ray RXTE/PCA pulse evolution with 35-day phase
can be explained [20] by NS free precession with a complex magnetic field structure on the NS
surface. In this model, in addition to the canonical field (a magnetic dipole field), arc-like magnetic
regions around the magnetic poles are included, which is a consequence of a likely non-dipole
magnetic field [21], [22]. Another explanation of the changes of the X-ray flux and X-ray pulses
rely on the partial blocking of the NS surface by the inner part of the accretion disk [18],[23].
Such suggestions require fine-tuning of the angle of the inner part of the disk. For reasonable
assumptions for the inner radius Rin ≈ 100RNS, the accuracy of the angle of the inner disk should
be θin ∼ RNS/Rin ≈ 0.5◦. Our model requires only θin > 0 at the short-on. Moreover, the hot corona
above the inner edge of the disk has a finite opacity and it blurs the X-ray pulses, but in model [23]
the inner edge should be sharp in order to partially cover the NS surface.

3. Modeling of optical light curves of HZ Her

Here we performed a modeling of long-term B-light curves. The photometrical light curve
was constructed using the following observations: 1972 – 1998 data compiled from [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40] (≈ 5800 points);
2010 – 2018 data were obtained by the present authors (≈ 7600 points).

The model includes two basic components:
a) an inclined, warped, forced precessing accretion disk;
b) a freely precessing neutron star.
The shape of the model optical light curve strongly depends on the X-ray shadow on the

optical star produced by the warped accretion disk and the X-ray irradiation pattern. The shadow
is calculated as follows. The disk is split along the radius in a finite number of rings and the solid
angle between each i-th and i+ 1-th ring is calculated, giving the i-th element of the shadow. As
the disk is warped, the i-th and i+ 1-th rings lie in different planes. The full shadow is produced
by all elements.

The geometrical parameters of the disk are given by the tilt to the orbital plane and the phase
disk angle (changing smoothly from the outer to the inner disk edges). The disk phase is counted
along the orbital motion. It is set to zero at the moment of the maximal opening of the outer disk
with respect to the observer. The tilt and phase angles of the i-th ring change linearly from the outer
edge to the inner edge. The difference between the inner and outer edge is called the twist angle.
The twist angle and the difference between the tilt angle of the outer and inner disk edge determine
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the shadow size. If the twist angle is zero and the tilt of the outer and inner edge is the same, the
disk shadow is determined only by the width of the outer disk.

To calculate the X-ray irradiation of the optical star we have used the model [20]. In this model
despite of usual rotation of the NS with Prot = 1.24s period there is rotation along one of the three
main inertia axes with Ppr ≈ 35d period due to the free precession (Fig. 2). The angle between the

Figure 2: Scheme of the free precession of the NS.

rotation axis and the inertia axes γ = 50◦. The angle between the magnetic dipole axis and the
inertia axis is 30◦. During the free precession the magnetic dipole axis covers a small circle on the
sky with radius 30◦.

At the 35-day phase 0.1 from the “main opening”, the angle between the magnetic dipole axis
and rotational axis becomes maximal (β = 50◦+30◦ = 80◦). This is the phase zero of the NS free
precession. At phase 0.6, this angle is minimal (β = 50◦−30◦ = 20◦). This is phase 0.5 of the NS
free precession.

If the magnetic dipole axis is inclined at β0 = arccos(
√

3/3) ≈ 54.7◦ to the NS rotation axis,
the magnetic torque Km on the inner edge of the disk vanishes (Fig. 3) [41], [42], [43].

Km =
4µ2

3πR3
d

cosα(3cosβ −1)[nω ,nd ] (3.1)

Here µ is the magnetic moment of the NS, Rd is the inner radius of the disk, α is the angle between
NS’s rotational axis and the inner disk axis, β is the angle between the rotational axis of the NS
and the NS’s magnetic axis. nω is the unity vector along NS’s rotational axis, nd is the unity vector
along the disk’s axis.

To the north and to the south of this angle, the magnetic torque is non-zero; the sign of the twist
angle is expected to change when crossing this critical angle. Non-zero magnetic torque causes the
twist of the inner edge of the disk with respect to the outer edge. In other words, node lines of the
inner and outer edges of the disk do not match, there is an angle between them that we call Z, which
can be both greater or lower than zero depending on the sign of the magnetic torque. The negative
sign means that during the precessional motion, the outer disk drags behind the inner disk and vice
versa. The value of the angle β (the angle between magnetic dipole axis and the rotational axis)
becomes equal to β0 twice during the free precession period. At this moments we should expect
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Figure 3: Path of the magnetic dipole due to free precession. Here β is the angle between the magnetic
dipole axis and the rotational axis. If β = β0, then Km = 0.

Z = 0. So, we should expect the opposite sign of Z in the North and in the South. Orientation of
the NS rotation axis in the picture plane does not affect the shape of the X-ray pulses, but has a
strong effect on the optical light curve. This makes it possible to determine the orientation of the
NS spin axis with respect to orbital plane. The angle between the NS spin axis and the projection
of the normal to the orbital plane on the sky is called κ .

The best-fit overall precession phase is obtained for κ = 8◦ with the 35-day precession phase
0.1 and 0.6 corresponding to the NS precession phase 0 and 0.5, respectively.

During the 35-day cycle the disk has a variable angular velocity with a mean value of 18◦ per
orbit (Fig. 4). The angular velocity of the inclined disk is defined by the tidal forces of the binary
system and the dynamic action of the accretion streams. The accretion streams reduce the disk’s
angular velocity. The disk has the lowest velocity at phases near 0.1 where irradiation by the NS
is maximal. Previously, we had suggested a simpler model with a constant angular velocity of the
disk and constant Z [44]. The present refined model with a variable angular velocity of the disk
provides better fits than the model with constant angular velocity.

When the irradiation is maximal, the accretion flow is also maximal and the dynamic action of
the accretion streams on the disk becomes maximal too. On the other hand, at the maximal angular
velocity of the disk (at phases near 0.6 where NS’s north magnetic pole is most distant from the
equator of the NS) the irradiation effect is minimal. We suggest the following formula for the
angular velocity of the disk: ϕ̇[◦/1.7d ] = 18◦−Acos[2π(x−0.05)], where A is the semi-amplitude
of the angular velocity of the disk, x is the phase of the 35-day cycle (x = 0.0 corresponds to main
opening), φ is the phase angle of the disk. The best estimate for A is 9◦.

The tilt of the outer θout and inner θin disk, the X-ray luminosity Lx and the contribution to
the optical flux from the disk have been optimized at each precession phase (see Table 1). At
each precession phase Z takes fixed values from −100◦ to 100◦ with 10◦ step. We used five disk
h/R ratios: 0.05, 0.1, 0.2, 0.3, 0.4; five inclinations: 90, 89, 88, 87, 86; several angular velocity
amplitudes A. θout and θin as well as accociated parameters shown in the table 1 are satisfying the
X-ray visibility in the main-on and the short-on, θin does not exceed θout by more than 2◦. Finally,
parameters shown in the Table 1 represent the 30% top best χ2 models.

Table 1 shows the best-fit parameters of the model. Best Z values are shown in Fig. 5. Fig. 6
shows the synthetic light curves with best-fit parameters and observed B light curves of HZ Her.
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Figure 5: The angle between the inner and outer edges of the disk as a function of the disk precession phase

The modeling was not performed for the optical phase intervals 0.0−0.13 and 0.87−1.0. At
these phases, the disk is obscured by the optical star. The brightness distribution over the disk is
complex, and we leave its study for future work.

Several peak-like features around the first five precession phases should be noted (red dots in
Figure 6). These features were observed for the first time by [37], [45], [39] and were investigated
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for the first time by [46]. This is the result of non-stationary streams striking the accretion disk.
These streams form an important part of the general nonlinear dynamics of the system. An original
modeling of these streams was done by [47]. The streams synchronize the precession of the accre-
tion disk to the precession of the NS. We note that such a situation is realized only if the NS rotation
axis is misaligned with the angular orbital momentum (the non-zero angle κ in our notation).

The optical light curves demonstrate the secondary minimum near precession phase 0.25 be-
cause of the passing of the disk and of the widest part of the shadow above the irradiated part of the
optical star at the orbital phase about 0.5. The secondary minimum is absent at precession phases
near 0.75 because the disk is projected onto its own shadow on the optical star surface.
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Table 1: Best χ2 models. Inclination is 89◦, κ = 8◦, A = 9◦.
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