МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

на правах рукописи

Tempob

Петров Андрей Андреевич

Кристаллизация гибридных перовскитов APbX₃ (A = CH₃NH₃⁺, HC(NH₂)₂⁺; X = I⁻, Br⁻) из апротонных растворителей

02.00.21 – Химия твёрдого тела

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Москва - 2021

Работа выполнена на Факультете наук о материалах МГУ имени М.В. Ломоносова

Научные

руководители: Алексей Борисович Тарасов,

кандидат химических наук, МГУ имени М.В. Ломоносова, заведующий Лабораторией новых материалов для солнечной энергетики Факультета наук о материалах

Евгений Алексеевич Гудилин,

доктор химических наук, профессор, член-корреспондент РАН, МГУ имени М.В. Ломоносова, заведующий кафедрой наноматериалов Факультета наук о материалах

Официальные

оппоненты: Александр Матвеевич Тойкка,

доктор химических наук, профессор, Институт химии СПбГУ, заведующий кафедрой химической термодинамики и кинетики

Сергей Александрович Адонин,

доктор химических наук, Институт неорганической химии им. А.В. Николаева СО РАН, в.н.с. Лаборатории синтеза комплексных соединений

Сергей Александрович Козюхин,

доктор химических наук, профессор, ИОНХ им. Н.С. Курнакова РАН, г.н.с. Лаборатории химии координационных полиядерных соединений

Защита диссертации состоится «10» декабря 2021 года в 17 ч 00 мин на заседании диссертационного совета МГУ.02.09 Московского государственного университета имени М.В. Ломоносова по адресу: 119991, г. Москва, Ленинские горы, дом 1, стр. 3, Химический факультет, ауд. 337.

E-mail: basolon@gmail.com (А.А. Петров, соискатель), dissovetinorg@gmail.com (Н.Р. Хасанова, учёный секретарь диссертационного совета МГУ.02.09).

Диссертация находится на хранении в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27). С информацией о регистрации участия в защите и с диссертацией в электронном виде можно ознакомиться на сайте ИАС «ИСТИНА»: https://istina.msu.ru/dissertations/401441743/

Автореферат разослан «11» ноября 2021 года

Учёный секретарь диссертационного совета МГУ.02.09, кандидат химических наук

Н.Р. Хасанова

Общая характеристика работы

Материалы на основе гибридных перовскитов состава APbX₃ (A = $CH_3NH_3^+$, $CH(NH_2)_2^+$, др.; X = I⁻, Br⁻, др.) представляют большой интерес с точки зрения их применения в фотовольтаике и оптоэлектронике благодаря уникальному набору свойств, таких как прямозонные переходы, высокая подвижность и большая длина свободного пробега электронов и дырочных носителей заряда, высокий коэффициент поглощения видимого излучения, низкая концентрация дефектов и относительно малая чувствительность функциональных характеристик к их концентрации, а также возможность варьировать ширину запрещённой зоны в широких пределах путём изменения химического состава. Как следствие, на основе данных материалов на сегодняшний день созданы перспективные прототипы фотодетекторов, светодиодов, а также детекторов рентгеновского излучения с высокими функциональными характеристиками. При этом наиболее перспективной областью применения таких материалов являются фотоэлектрические преобразователи для солнечной энергетики, а рекордные значения КПД солнечных элементов на основе гибридных перовскитов уже превысили 25%, что больше аналогичных значений для широко распространенных коммерческих солнечных элементов на основе поликристаллического кремния.

Перовскитные солнечные элементы – современные тонкоплёночные устройства, в которых светопоглощающий слой перовскита имеет толщину 400 – 700 нм. Основным подходом к получению плёнок гибридных перовскитов являются растворные методы, позволяющие при комнатной температуре с помощью недорогого оборудования и доступных реагентов получать материалы с заданными свойствами. При этом применение диметилсульфоксид, растворителя: находят три основных диметилформамид и оксолан-2-он. Несмотря на широкое применение растворных методов, процесс кристаллизации растворов гибридных перовскитов ИЗ данных растворителей неизбежно осложняется формированием кристаллосольватов различного состава, что существенно осложняет контроль микроструктуры плёнок и может приводить к ухудшению функциональных свойств получаемых материалов, а также затрудняет разработку воспроизводимых и масштабируемых методик формирования светопоглощающих слоёв на основе гибридных перовскитов. Отсутствие систематических и достоверных данных о возможных продуктах кристаллизации и способах контроля пути кристаллизации представляет собой одну из ключевых проблем, которые препятствуют эффективному развитию растворных методов получения гибридных перовскитов.

В актуальность фундаментальных связи с этим. и практико-ориентированных исследований процессов кристаллизации растворов гибридных перовскитов и разработки подходов к направленному получению гибридных перовскитов за счёт контроля промежуточных продуктов кристаллизации не вызывает сомнений и позволяет решить важнейшую проблему формирования светопоглощающих материалов поколения с заланными функциональными нового составом И характеристиками.

Цель настоящей работы – выявление особенностей процессов кристаллизации, установление и контроль факторов, влияющих на состав и морфологию тонкоплёночных материалов на основе гибридных перовскитов APbX₃ (A = $CH_3NH_3^+$, $CH(NH_2)_2^+;$ $\mathbf{X} =$ I-, Br⁻). кристаллизующихся из диметилсульфоксида, диметилформамида И оксолан-2-она. Для достижения указанной цели решали следующие задачи:

- построение изотермических сечений трёхкомпонентных фазовых диаграмм MAI – PbI₂ – DMF и MAI – PbI₂ – DMSO при давлении 1 атм. и равновесной упругости паров растворителей;
- установление состава и кристаллической структуры промежуточных продуктов кристаллизации гибридных перовскитов APbX₃ (A = CH₃NH₃⁺, CH(NH₂)₂⁺; X = Г⁻, Br⁻) из диметилсульфоксида, диметилформамида и оксолан-2-она, в том числе для смешанных катионных и анионных составов;
- анализ взаимосвязи между составом раствора, характеристиками апротонных растворителей, условиями кристаллизации и составом кристаллизующихся фаз;
- кристаллохимический анализ и систематизация структур кристаллосольватов, образующихся при кристаллизации гибридных перовскитов из растворов, установление взаимосвязи морфологии образующихся гибридных перовскитов с кристаллической структурой предшественников;
- определение условий формирования и разработка методик получения массивов нитевидных кристаллов гибридных перовскитов с контролируемым составом и морфологией;
- установление факторов и разработка подходов, позволяющих экспериментально контролировать фазовый состав, структуру и морфологию получаемых материалов на основе гибридных перовскитов.

Основными объектами исследования в работе являются растворы гибридных перовскитов состава $APbX_3$ ($A = CH_3NH_3^+$, $CH(NH_2)_2^+$; $X = I^-$, Br^-) в диметилсульфоксиде, диметилформамиде и оксолан-2-оне и продукты их кристаллизации, в частности, гибридные перовскиты

различного состава и кристаллосольваты в виде изолированных кристаллов и поликристаллических плёнок.

В работе использован комплекс современных **методов исследования** материалов, включающий оптическую и растровую электронную микроскопию, рентгенофазовый анализ, рентгеноструктурный анализ с использованием синхротронного излучения, фотолюминесцентную спектроскопию, а также спектроскопию комбинационного рассеяния.

Научная новизна работы:

1) Установлено формирование 14 промежуточных фаз кристаллосольватов при кристаллизация гибридных перовскитов из диметилсульфоксида, диметилформамида и оксолан-2-она: PbI2·2DMSO, PbI2·DMF, (MA)2Pb3I8·DMSO, MAI·DMSO, MAPbI3·DMF, (MA)3PbI5·DMF, (MA)₂Pb₃I₈·2DMF, (FA)₂Pb₃I₈·4DMF, FAPbI₃·2DMF, (FA)₅Pb₂I₉·0,5DMSO, $(MA)_{8}Pb_{18}I_{44}$ ·xGBL, $(MA)_{8-z}Pb_{18-\delta/2}I_{44-\delta-z}$ · νGBL FA₂PbBr₄·DMSO, И $(MA)_2Pb_3I_8 \cdot 2GBL$ ИЗ которых 10 фаз получены И структурно охарактеризованы впервые.

2) Проведены кристаллохимический анализ и систематизация структур промежуточных фаз – кристаллосольватов, обнаруженных в системах $MAX - PbX_2 - S$ и $FAX - PbX_2 - S$ (X = I⁻, Br⁻; S = DMSO, DMF, GBL).

3) Экспериментально выявлены основные группы параметров и их взаимосвязь, в том числе катионный и анионный состав исходного раствора, природа растворителя и температурно-временные условия синтеза, в совокупности позволяющие контролировать фазовый состав, структуру, морфологию и функциональные характеристики целевых материалов на основе гибридных перовскитов. Установлено, что при использовании растворных методов гибридные перовскиты наследуют морфологию промежуточно образующихся кристаллосольватов в силу топотактического характера фазовых превращений, поэтому структура и химическая природа использованных апротонных растворителей проявляет себя в качестве ключевого фактора синтеза в широком диапазоне условий.

Положения, выносимые на защиту:

кристаллическая 1) Условия формирования И структура промежуточных фаз при кристаллизации гибридных перовскитов из растворов в диметилсульфоксиде, диметилформамиде и оксолан-2-оне: PbI2·2DMSO, PbI2·DMF, (MA)2Pb3I8·DMSO, MAI·DMSO, MAPbI3·DMF, $(MA)_2Pb_3I_8 \cdot 2DMF$, $(FA)_2Pb_3I_8 \cdot 4DMF$, (MA)₃PbI₅·DMF, FAPbI₃·2DMF, $(FA)_5Pb_2I_9.0,5DMSO,$ FA₂PbBr₄·DMSO, $(MA)_{8}Pb_{18}I_{44}$ ·xGBL, (MA)_{8-z}Pb_{18-δ/2}I_{44-δ-z}·уGBL и (MA)₂Pb₃I₈·2GBL.

2) Результаты кристаллохимического анализа и систематизации структур промежуточных фаз – кристаллосольватов, обнаруженных в системах $MAX - PbX_2 - S$ и $FAX - PbX_2 - S$ (X = I⁻, Br⁻; S = DMSO, DMF, GBL).

 Основные группы факторов и их взаимосвязь, позволяющие контролировать фазовый состав, структуру, морфологию и функциональные характеристики целевых материалов на основе гибридных перовскитов.

Практическая значимость работы заключается в выявлении экспериментальных факторов и разработке практических подходов, позволяющих контролировать состав и морфологию кристаллизующихся фаз на всех этапах синтеза, а также функциональные свойства целевых материалов. В частности, разработаны методики, позволяющие получать сплошные плёнки гибридных перовскитов из оксолан-2-она, а также методики получения массивов нитевидных кристаллов гибридных перовскитов различного состава контролируемым размером с И отношением длины к диаметру. Полученные результаты представляют большой практический интерес для развития растворных методов получения материалов на основе гибридных перовскитов, в том числе, для применения в фотовольтаике и оптоэлектронике.

Личный вклад автора работы состоит в анализе литературных источников, планировании и реализации экспериментов по исследованию процессов кристаллизации гибридных перовскитов из апротонных растворителей, разработке методик получения плёнок гибридных перовскитов, комплексной характеризации полученных образцов с использованием большинства методов, использованных в настоящей работе, а также подготовке публикаций по результатам настоящей работы. Основная часть работы выполнена лично автором в Лаборатории новых материалов для солнечной энергетики Факультета наук о материалах МГУ имени М.В. Ломоносова. Часть работ по синтезу и исследованию нитевидных кристаллов гибридных перовскитов выполнялась сотрудничестве с лабораторией профессора М. Гретцеля (Федеральная политехническая школа Лозанны, Швейцария). Работы по проведению рентгеноструктурных экспериментов И установлению структуры кристаллосольватов выполнены совместно с сотрудниками Курчатовского синхротронных исследований (Я.В. Зубавичусом, центра П.В. Дороватовским), а также Российского университета дружбы народов (В.Н. Хрусталёвым).

Апробация работы состоялась на следующих конференциях: XI межлунаролная научная конференция «Кинетика И механизм кристаллизации. Кристаллизация и материалы нового поколения» (г. Иваново, Россия, 2021 г), XXVIII Межлународная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2021» (г. Москва, Россия, 2021 г); XXVII Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020» (г. Москва, Россия, 2020 г): II Московская осенняя международная конференция по перовскитной фотовольтаике «МАРРІС-2020» (г. Москва, Россия, 2020 г); I Московская осенняя международная конференция по перовскитной «MAPPIC-2019» (г. Москва, Россия. фотовольтаике 2020 г); XXVI Международная научная конференция студентов, аспирантов и «Ломоносов-2019» (г. Москва. vчёных Россия. 2020 г): молодых IV Международная конференция по перовскитным солнечным элементам и «PSCO-2018» (г. Лозанна, оптоэлектронике Швейцария, 2018 г); XIV Конференция с международным участием «Физико-химические проблемы возобновляемой энергетики» (г. Черноголовка, Россия, 2018 г); IV Междисциплинарный научный форум с международным участием «Новые материалы и перспективные технологии» (г. Москва, Россия, 2018 г); Международная конференция по перовскитной тонкоплёночной фотовольтаике «ABXPV17» (г. Валенсия. Испания. 2017): III Международная школа-конференция по оптоэлектронике, фотонике, наноструктурам «Saint Petersburg инженерии И OPEN 2016» (г. Санкт-Петербург, Россия, 2016 г); V Международная конференция по современным трендам в исследовании искусственных и естественных нанообъектов «STRANN-2016» (г. Санкт-Петербург, Россия, 2016 г); VI Всероссийская конференция по наноматериалам с элементами научной школы для молодёжи «НАНО-2016» (г. Москва, Россия, 2016 г); XXIII Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2016» (г. Москва, Россия, 2016 г); VI Конференция молодых учёных по общей и неорганической химии (г. Москва, Россия, 2016 г).

Работа состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, выводов, благодарности, списка литературы и приложений, изложена на 203 страницах, содержит 130 рисунков, 18 таблиц и 2 приложения, список использованной литературы включает 280 источников.

Основное содержание работы

В главе «Введение» обоснована актуальность работы, сформулированы цель и задачи, перечислены объекты исследования, отмечена новизна работы, её практическая значимость, апробация полученных результатов, а также личный вклад автора.

В главе «Обзор литературы» рассмотрены особенности строения и функциональный свойства гибридных органо-неорганических галогенидных перовскитов состава APbX₃ (A = CH₃NH₃⁺, HC(NH₂)₂⁺; X = I⁻, Br⁻) и материалов на их основе. Рассмотрены основные области применения гибридных перовскитов и приведена подробная классификация методов их получения. Особое внимание уделено растворным методам получения гибридных перовскитов и особенностям кристаллизации гибридных перовскитов из апротонных растворителей (диметилсульфоксид (DMSO), диметилформамид (DMF), оксолан-2-он (GBL)), в частности, соединениям, которые могут быть получены из растворов прекурсоров в данных растворителях, а также влиянию растворителей на морфологию и функциональные свойства получаемых плёнок перовскита. Рассмотрены структура и свойства известных из литературы к моменту начала работы автором в данной области кристаллосольватов. Сформулированы основные актуальные проблемы, которые остаются нерешенными в предметной области тематики НКР.

В главе «Экспериментальная часть» описаны исходные реактивы, разработанные методики получения и комплексного исследования образцов (рентгенофазовый анализ, рентгеноструктурный анализ, растровая электронная микроскопия, оптическая микроскопия, фотолюминесцентная спектроскопия, спектроскопия комбинационного рассеяния). Кроме того, приведены оригинальные методики измерения растворимости гибридных прекурсоров перовскитов различного состава и смеси их в лиметилсульфоксиле И диметилформамиде, а также построения фазовых диаграмм MAI – PbI2 – DMSO изотермических сечений MAI – PbI₂ – DMF. Рассмотрены новые методики роста нитевидных кристаллов перовскита MAPbI₃ и получения плёнок перовскита MAPbI₃ из оксолан-2-она и диметилформамида и условия экспериментов по исследованию кристаллизация перовскитов смешанного катионного и анионного составов в тонком слое раствора.

В главе «Обсуждение результатов» представлены основные результаты работы, приведены анализ и теоретические обоснования полученных экспериментальных данных, а также предложены практические рекомендации по получению материалов на основе гибридных перовскитов с улучшенными функциональными свойствами.

В разделе «Фазовые равновесия в системах MAI-PbI2-DMF *и МАІ-РЫ₂-DMSO*» растворимость прекурсоров (PbI₂ и MAI) в зависимости от их соотношения экспериментально определена при трёх температурах (30 °C, 60 °C и 90 °C) для трёхкомпонентных систем MAI – PbI₂ – DMF и $MAI - PbI_2 - DMSO$ при 1 атм. и насыщенном давлении паров растворителей. В результате анализа состава фаз, находящихся в равновесии растворами при 30 °C. насышенными построены с изотермические сечения фазовых диаграмм трёхкомпонентных систем MAI – PbI₂ – DMF (рис. 1 а) и MAI – PbI₂ – DMSO (рис. 1 б).

Рисунок 1. Изотермические сечения фазовых диаграмм трёхкомпонентных систем MAI – PbI₂ – DMF (а) и MAI – PbI₂ – DMSO (б) при 30 °C. Звёздочками отмечены наблюдаемые в системах фазы, пунктирными линиями отмечены линии ликвидуса при 60 °C и 90 °C.

Установлено, что изотермическое сечение трёхкомпонентной фазовой диаграммы MAI – PbI₂ – DMF при 30 °C содержит 8 фаз: MAI, PbI₂, DMF, а также перовскит MAPbI₃ и 4 кристаллосольвата ((MA)₃PbI₅·DMF, MAPbI₃·DMF, $(MA)_2Pb_3I_8 \cdot 2DMF$, PbI₂·DMF). лва ИЗ которых ((MA)₃PbI₅·DMF и MAPbI₃·2DMF) обнаружены впервые. Полученные данные свидетельствуют, что перовскит MAPbI₃ не сосуществует с жидкой фазой, при этом наблюдаются 4 эвтонические точки, а раствор (жидкая фаза) может находиться в равновесии с одной из следующих пяти твёрдых фаз: MAI, (MA)₃PbI₅·DMF, MAPbI₃·DMF, (MA)₂Pb₃I₈·2DMF, PbI₂·DMF в зависимости от соотношения r = PbI₂/MAI (указаны в порядке возрастания PbI₂/MAI в растворе).

Таким образом, в равновесных условиях в процессе кристаллизации раствора MAPbI₃ в DMF со стехиометрическим соотношением прекурсоров при испарении чистого растворителя состав системы переходит из области жидкой фазы в двухфазную область существования раствора с кристаллосольватом MAPbI₃·DMF, который является конечным продуктом кристаллизации при изотермическом испарении растворителя. При дальнейшем нагревании фазы MAPbI₃·DMF растворитель удаляется из структуры кристаллосольвата и образуется фаза перовскита MAPbI₃.

Изотермическое сечение трёхкомпонентной фазовой диаграммы MAI – PbI₂ – DMSO при 30 °C содержит 9 фаз: MAI, PbI₂, DMSO, перовскит MAPbI₃ и 5 кристаллосольватов (MAI·DMSO, (MA)₃PbI₅·DMSO, (MA)₂Pb₃I₈·DMSO, PbI₂·DMSO, PbI₂·2DMSO), включая обнаруженную впервые фазу кристаллосольвата MAI·DMSO.

В сравнении с изотермическим сечением фазовой диаграммы $MAI - PbI_2 - DMF$, изотермическое сечение фазовой диаграммы $MAI - PbI_2 - DMSO$ имеет несколько существенных отличий. На ней отсутствует фаза состава MAPbI_3·DMSO, а также присутствует два типа кристаллосольвата иодида свинца (PbI_2·DMSO и PbI_2·2DMSO), один из которых не находится в равновесии с раствором. Кроме того, на данной фазовой диаграмме присутствует кристаллосольват иодида метиламмония (MAI·DMSO), а метиламмоний-избыточная фаза (MA)₃PbI_5·DMSO не сосуществует с раствором. Таким образом, в зависимости от состава раствора в равновесии с ним могут находится всего три фазы: MAI·DMSO, (MA)₂Pb₃I_8·2DMSO, PbI_2·2DMSO.

Поскольку фаза состава MAPbI₃·DMSO не существует, путь кристаллизации MAPbI₃ из стехиометрического раствора в этом случае пересекает 6 областей на фазовой диаграмме, начиная с образования фазы (MA)₂Pb₃I₈·2DMSO и представляет собой достаточно сложный процесс. В частности, линия, соединяющая фазы DMSO и MAPbI₃ пересекает несколько двухфазных и трёхфазных полей, а при изотермическом испарении растворителя образуются три твёрдые фазы, а их дальнейший нагрев приведёт к неоднородному составу получаемого в результате такого процесса материала.

При увеличении температуры растворимость PbI₂ и MAI в DMF и DMSO значительно увеличивается, а поля на фазовой диаграмме, соответствующие жидкой фазе, существенно расширяются. При этом важно отметить, что фаза MAPbI₃ не наблюдалась в равновесии с насыщенными растворами в DMF и DMSO ни при 60 °C, ни при 90 °C, свидетельствуя о довольно высокой стабильности фаз кристаллосольватов в растворах.

В системе $MAI - PbI_2 - DMSO$ максимальная растворимость, наблюдаемая при $PbI_2/MAI = 1:2$ при 30 °C составляет S = 2,85 M, что соответствует 13 молекулам DMSO на один ион Pb^{2+} в растворе, а при 90 °C максимум растворимости достигает значения S = 4,3 M. При такой высокой концентрации ($\approx 4,3$ M) на один ион Pb^{2+} приходится всего 3,3 молекулы растворителя.

В системе MAI – PbI₂ – DMF наблюдается более сложный характер зависимости растворимости от состава с двумя максимумами при PbI₂/MAI

= 1:4 и при PbI₂/MAI = 3:2. Максимальная растворимость PbI₂ при 30 °C составляет S = 1,6 M при PbI₂/MAI = 3:2, а при 90 °C наблюдается резко выраженный максимум растворимости при соотношении PbI₂/MAI = 1:3 (S = 4,8 M), что соответствует 2,6 молекулам DMF на один ион Pb²⁺. Высокую растворимость PbI₂ в присутствии MAI можно объяснить образованием иодоплюмбатных комплексов вида [PbI_nS_{6-n}]⁽ⁿ⁻²⁾⁻ (n = 1 – 6; S = DMSO, DMF), известных по данным спектроскопии поглощения.

При кристаллизации растворов, содержащих MABr и PbBr₂ в DMF и DMSO, при комнатной температуре независимо от соотношения реагентов PbBr₂/MABr в растворе (в диапазоне от 1:3 до 3:1) продуктами кристаллизации являются только исходные реагенты (MABr, PbBr₂) и перовскит MAPbBr₃. Отсутствие кристаллосольватов в случае бромидных систем может быть объяснено более высокой термодинамической стабильности перовскита MAPbBr₃ в сравнении с перовскитом MAPbI₃ [6], что приводит к его кристаллизации, а не формированию фаз кристаллосольватов.

В разделе «Структура кристаллосольватов в системах $MAI - PbI_2 - DMF$ и $MAI - PbI_2 - DMSO$ » структуры ранее неизвестных фаз ((MA)₂Pb₃I₈·2DMF и (MA)₃PbI₅·DMF), а также структура MAPbI₃·DMF установлены методом рентгеноструктурного анализа с использованием синхротронного излучения. На рис. 2 показаны внешний вид (а-в) и кристаллическая структура полученных кристаллов (г-е).

Рисунок 2. Внешний вид (а-в) и кристаллическая структура (г-е) кристаллосольватов, полученных путём испарения растворителя в каплях насыщенного раствора с разным соотношением MAI/PbI₂ в DMF: (MA)₂Pb₃I₈·2DMF (а, г), MAPbI₃·DMF (б, д) и (MA)₃PbI₅·DMF (в,е).

Кристаллосольват (MA)₂Pb₃I₈·2DMF имеет форму игольчатых светло-жёлтых кристаллы, кристаллизуется в в ромбической сингонии в пространственной группе *Pnnm* с параметрами элементарной ячейки: a = 17.165(4) Å, b = 21.955(4) Å, c = 4.5549(9) Å, и имеет структурный мотив, представляющий собой ленты {Pb₃I₈²⁻}_∞, образованные тремя связанными общими рёбрами октаэдрами PbI₆, разделённые катионами MA⁺ и молекулами DMF. Кристаллосольват MAPbly DMF также имеет форму игольчатых светло-жёлтых кристаллов, кристаллизуется в пространственной группе P21/c с параметрами элементарной ячейки a = 4.5647(9), b = 25.446(5) Å, c = 12.119(2) Å, $\beta = 96.75(3),$ и имеет структурный мотив, представляющий собой ленты $\{Pb_2I_6^{2-}\}_{\infty}$, образованные двумя связанными общими рёбрами октаэдрами PbI₆.

В отличие от фаз (MA)₂Pb₃I₈·2DMF и MAPbI₃·DMF, фаза (MA)₃PbI₅·DMF не представлена кристаллами игольчатой формы, кристаллизуются в триклинной сингонии в пространственной группе $P\overline{1}$ с параметрами элементарной ячейки a = 10,1714(15) Å, b = 11,335(3) Å, c = 12,394(2) Å, $\alpha = 111,18(3)^{\circ}$, $\beta = 101,11(3)^{\circ}$, $\gamma = 109,80^{\circ}$ и по структуре напоминает кристаллосольват (MA)₃PbI₅·DMSO, также имеющий структурный мотив цепочек, состоящих из соединённых вершинами октаэдров PbI₆, разделённых катионами MA⁺ и молекулами растворителя.

«Структура кристаллосольватов B разделе ß системах $FAX - PbX_2 - S$ (S = DMSO, DMF; $X = I^{-}$, Br⁻)» в ходе экспериментов по получению и установлению структуры фаз кристаллосольватов, образующихся в системах с иодидом формамидиния (FAI – PbI_2 – DMSO, FAI – PbI2 – DMF) и бромидом формамидиния (FABr – PbBr2 – DMSO, FAI – PbBr₂ – DMF) для каждой из четырёх рассматриваемых растворных систем было приготовлено по 3 раствора с соотношением прекурсоров $PbX_2/FAX = 3:2, 1:1$ и 1:3. В ходе медленного испарения растворителя в каплях раствора были получены кристаллические фазы (рис. 3), которые рентгеноструктурного затем были исследованы методом анализа. Проведённые эксперименты позволили выявить ещё 4 новых кристаллосольвата: $(MA)_2Pb_3I_8 \cdot 2DMF$, $(MA)_2Pb_3I_8 \cdot 2DMSO$, (FA)₅Pb₂I₉·0,5DMSO и (FA)₂PbBr₄·DMSO (рис. 4).

Рисунок 3. Внешний вид кристаллов, полученных при кристаллизации растворных систем FAX – PbX₂ – S (S = DMF, DMSO; X = I⁻, Br⁻) с различным соотношением прекурсоров (PbX₂/FAX = 3:2, 1:1, 1:3).

Рисунок 4. Кристаллическая структура кристаллосольвата (FA)₂Pb₃I₈·4DMF (a), FAPbI₃·2DMF (б), (FA)₅Pb₂I₉·0,5DMSO (в) и FA₂PbBr₄·DMSO (г).

В системе FAI – PbI₂ – DMF при соотношении PbI₂/FAI = 3:2 наблюдался рост светло-жёлтых кристаллов игольчатой формы ранее неизвестного кристаллосольвата состава (FA)₂Pb₃I₈·4DMF (рис. 4 а), который, как и кристаллосольваты (MA)₂Pb₃I₈·2DMF и (MA)₂Pb₃I₈·2DMSO, кристаллизуется в ромбической сингонии и имеет ленточный структурный

мотив {Pb₃I₈²⁻}, однако содержит в два раза больше молекул диметилформамида в структуре (пространственная группа Fdd2 с параметрами ячейки: a = 40,200(8) Å, b = 45,720(9) Å, c = 4,5800(9) Å).

При кристаллизации раствора с соотношением PbI₂/FAI = 1:1 светло-жёлтых кристаллов FAPbI₃·2DMF наблюдалось образование (рис. 4 б), кристаллизующихся в триклинной сингонии в пространственной группе $P\overline{1}$ с параметрами элементарной ячейки: a = 7.8788(16) Å, b = 10,497(2) Å, c = 12,678(3) Å, $\alpha = 75,92(3)^{\circ}, \beta = 75,11(3)^{\circ}, \gamma = 68,82(3)^{\circ}$. To сравнению с метиламмонийным аналогом (MAPbl3·DMF) кристаллосольват FAPbI₃·2DMF также содержит в лва раза больше молекул диметилформамида благодаря дополнительным водородным связям с катионом формамидиния.

В случае кристаллизации растворов бромидной системы FABr – PbBr₂ – DMF при соотношениях PbI₂ и FAI = 3:2 и 1:1 наблюдалось образование фазы перовскита FAPbBr₃, а при кристаллизации избыточного по катиону формамидиния раствору (PbBr₂/FABr = 1:3) наблюдалась кристаллизация фазы FA₂PbBr₄.

В системе FAI – PbI₂ – DMSO при соотношениях PbI₂ и FAI = 3:2 и 1:1 наблюдалась кристаллизация кристаллосольвата PbI₂·2DMSO, а в бромидной системе FABr – PbBr₂ – DMSO, как и в случае с диметилформамидом, кристаллизовался перовскит FAPbBr₃. Однако при кристаллизации избыточных по катиону формамидиния растворов (PbI₂/FAI = 1:3 и PbBr₂/FABr = 1:3) обнаружено формирование двух новых фаз – кристаллосольватов (FA)₅Pb₂I₉·0,5DMSO и (FA)₂PbBr₄·DMSO, представляющих собой прозрачные бесцветные кристаллы.

Фаза (FA)₅Pb₂I₉·0,5DMSO кристаллизуется в гексагональной сингонии и пространственной группе $P\overline{6}$ с параметрами элементарной ячейки a = 26,770(3) Å, b = 26,770(3) Å, c = 14,860(2) Å (рис. 4 в) и состоит из разделённых частично разупорядоченными катионами формамидиния изолированных димеров Pb₂I₉.

Фаза FA2PbBr4·DMSO кристаллизуется в ромбической сингонии в пространственной группе Pca21 с параметрами элементарной ячейки a = 22,334(5) Å, b = 12,933(3) Å, c = 11,629(2) Å и состоит из цепочек соединённых вершинами октаэдров PbBr₆, в которых один из не мостиковых атомов брома замещён на атом кислорода молекулы DMSO (рис. 4 г). Таким образом, FA₂PbBr₄·DMSO является первым известным кристаллосольватом с органическими катионами, образующимся в рассмотренных системах, в структуре которого олним ИЗ шести лигандов во внутренней координационной сфере свинца является кислород молекулы растворителя, что типично для кристаллосольватов без органических катионов (PbBr₂·2DMSO, PbI₂·2DMSO, PbBr₂·DMF, PbI₂·DMF).

кристаллосольватов разделе «Структура B ß системах $MAI - PbI_2 - GBL \ u \ FAI - PbI_2 - GBL$ » установлено, что оксолан-2-он занимает особое место среди апротонных растворителей, применяемых для создания материалов на основе гибрилных перовскитов. Из литературных данных известно, что зависимость растворимости перовскита MAPbI₃ от температуры в оксолан-2-оне (GBL) имеет сложный характер, возрастая при нагреве раствора от 20 °C до 60 °C, а затем резко снижаясь с дальнейшим повышением температуры. Такой характер кривой растворимости с ярко выраженным максимумом является свидетельством сильного взаимодействия растворённых прекурсоров с молекулами растворителя и объясняется в работе [7] образованием в растворе при низких температурах иодоплюмбатных комплексов, которые при дальнейшем нагреве начинают распадаться, приводя к падению растворимости. Из литературы известно, что растворимость MAPbI₃ в GBL имеет ретроградный характер при температуре > 60 °C, что лежит в основе метода выращивания монокристаллов MAPbI₃ [7,8], однако сведений о кристаллизации растворов MAPbI₃ в GBL при температуре ниже 60 °C в литературе не наблюдается. Кроме того, не сообщается ни об одном кристаллосольвате, которые могли бы образовываться в системе MAI – PbI₂ – GBL.

Медленная кристаллизация раствора MAPbI₃ в капле раствора при комнатной температуре, вызванная постепенным испарением растворителя привела к одновременному образованию сразу трёх видов кристаллов (рис. 5). Установлено, что игольчатые кристаллы представляют собой ещё один ранее неизвестный кристаллосольват состава (MA)₂Pb₃I₈·2GBL, кристаллы неправильной округлой формы идентичны кристаллам, полученным при охлаждении насыщенного раствора, и имеют состав (MA)₈Pb₁8I₄4:xGBL, а кристаллы, имеющие форму тетраэдров, представляют собой ещё один новый кристаллосольват состава (MA)₈-zPb₁8-2/2I44-8-z-y/GBL.

Фаза (MA)₂Pb₃I₈·2GBL кристаллизуется в моноклинной сингонии и пространственной группе *C*2/*m* с параметрами элементарной ячейки a = 21,822(4) Å, b = 4,5979(9) Å, c = 16,653(3) Å, $\beta = 101,80(3)^{\circ}$, а её структура очень похожа на структуры кристаллосольватов (MA)₂Pb₃I₈·2DMF и (MA)₂Pb₃I₈·2DMSO и имеет такой же структурный мотив, представляющий собой ленты {Pb₃I₈²⁻}_∞, образованные тремя октаэдрами PbI₆ с рёберным сочленением и разделённые катионами MA⁺ и молекулами GBL.

Рисунок 5. Внешний вид и кристаллическая структура кристаллов, образующихся при кристаллизации в толстом слое капли раствора MAPbI3 в GBL в ходе испарения растворителя: (MA)₂Pb₃I₈·2GBL (a), (MA)₈-zPb_{18-δ/2}I44-δ-z·yGBL (б), (MA)₈Pb₁₈I44·xGBL (в).

Фаза (MA)₈Pb₁₈I₄₄·*х*GBL кристаллизуется в тетрагональной сингонии в пространственной группе *I4/m* с параметрами элементарной ячейки a = 23,279(3) Å, c = 30,804(6) Å и имеет уникальную структуру, состоящую из анионных кластеров [Pb₁₈I₄₄]^{8–}, в которых атомы Pb и I располагаются как в структурном типе NaCl, а сами кластеры располагаются по вершинам и в центре элементарной ячейки.

Фаза (MA)_{8-z}Pb_{18-6/2}I44-6-z[·]уGBL кристаллизуется в кубической сингонии и пространственной группе $P\overline{4}3m$ с параметрами элементарной ячейки: а = 23,290(3) Å, $\alpha = \beta = \gamma = 90^{\circ}$, также имеет структурный мотив из кластеров [Pb₁₈I₄₄]⁸⁻, однако каждый второй кластер в структуре разупорядочен, а позиции атомов Pb и I имеют неполную заселённость.

Трансформация кристаллов (MA)₈Pb₁₈I44[.]xGBL в (MA)_{8-z}Pb_{18-δ/2}I44-δ-z[.]yGBL, по-видимому, сопровождается выходом молекул GBL из пространства между кластерами [Pb₁₈I₄₄]⁸⁻, о чём свидетельствует уменьшение объёма элементарной ячейки с 16,7 нм³ до 12,6 нм³. При этом водородные связи, которые образовывали катионы метиламмония с молекулами GBL, исчезают, что приводит к дестабилизации кластеров и частичной заселённости позиций атомов Pb и I.

При кристаллизации растворов FAPbI₃ из GBL также наблюдалось образование кристаллов, имеющих форму тетраэдров, также состоящих из

анионных кластеров $[Pb_{18}I_{44}]^{8-}$ и кристаллизующихся в кубической сингонии с параметром a = 23,540 Å, что на 1,1% больше, чем у кристаллосольвата с метиламмонием $(MA)_{8-z}Pb_{18-\delta/2}I_{44-\delta-z}$ уGBL (a = 23,290 Å).

B разделе «Феноменологическая классификация структур кристаллосольватов в системах $MAX - PbX_2 - S$ и $FAX - PbX_2 - S$ $(X = \Gamma, Br; S = DMSO, DMF, GBL)$ » в ходе кристаллохимического анализа, проведённого в рамках данной работы, предложена классификация кристаллосольватов, образующихся в системах $MAX - PbX_2 - S$ И $FAX - PbX_2 - S$ (S = DMSO, DMF, GBL), на основании характера сочленения структурных полиэдров. Установлено, что рассмотренные в работе кристаллосольваты являются структурами, производными от двух структурных типов (NiAs, NaCl), в которых наблюдаются искажённые плотнейшие упаковки из анионов (I⁻, Br⁻), центров масс органических катионов (MA⁺, FA⁺) и молекул растворителя DMSO и DMF с различным заполнением октаэдрических пустот ионами свинца (рис. 6), а также содержат структурный мотив из различным образом ориентированных фрагментов типа PbI₂, являющего производным от типа NiAs.

Рисунок 6. Схема взаимосвязи структуры кристаллосольватов, образующихся в системах MAX – $PbX_2 - S$ и FAX – $PbX_2 - S$ (X = I⁻, Br⁻; S = DMSO, DMF, GBL), со структурными прототипами NaCl (a), NiAs (б) и PbI₂ (в).

Фазы FA2PbBr4·DMSO, (MA)8Pb18I44·xGBL, (MA)8-zPb18-ð/2I44-ð-z уGBL, (MA)3PbI5·DMF и (MA)3PbI5·DMSO можно рассматривать как фазы, производные от структурного типа NaCl, фазы FAPbI3·2DMF и (FA)5Pb2I9·0,5DMSO – как фазы, производные от структурного типа NiAs, а остальные рассмотренные кристаллосольваты ((MA)2Pb3I8·2DMF, $(MA)_2Pb_3I_8\cdot 2DMSO$, $(MA)_2Pb_3I_8\cdot 2GBL$, $(FA)_2Pb_3I_8\cdot 4DMF$, MAPbI_3 $\cdot DMF$, PbI_2 $\cdot DMSO$, PbI_2 $\cdot DMF$, PbBr_2 $\cdot DMF$, PbI_2 $\cdot 2DMSO$, PbBr_2 $\cdot 2DMSO$) представляют собой фазы, состоящие из различным образом ориентированных фрагментов типа PbI_2.

В разделе «Получение нитевидных кристаллов гибридных перовскитов» разработаны методики получения нитевидных кристаллов гибридных перовскитов. В то время как образование игольчатых кристаллов при формировании плёнок является нежелательным, поскольку нарушает сплошность и гомогенность плёнок, нитевидные кристаллы, также называемые в литературе нанонитями (англ. "nanowires") рассматриваются как перспективные материалы для применения как в фотовольтаике, так и в оптоэлектронике [9].

Установлено, что нитевидные кристаллы перовскита MAPbI3 образующиеся при конверсии плёнок иодида свинца раствором MAI в изопропаноле, содержащем от 1 до 20 об. % DMF, являются следствием образования промежуточной фазы – кристаллосольвата (MA)₂Pb₃I₈·2DMF, претерпевающего топотактическое превращение с образованием фазы перовскита.

Исследовано влияние температуры, концентрации DMF, типа растворителя, концентрация MAI, а также времени конверсии на состав и размер образующихся кристаллов и разработана методика получения массивов нитевидных кристаллов MAPbI₃ с заданным размером (рис. 7).

Рисунок 7. Нитевидные кристаллы перовскита MAPbI₃, полученные при погружении плёнок PbI₂ на 3 минуты в раствор с различной концентрацией MAI, содержащий 10% DMF.

Установлено, что при замене MAI в растворе на FAI можно получить нитевидные кристаллы перовскита FAPbI₃, которые образуются путём топотактического превращения кристаллосольвата (FA)₂Pb₃I₈·4DMF. Методом ионного обмена получены нитевидные кристаллы с другим анионным составом: MAPbBr₃, FAPbBr₃, MAPbCl₃ (рис 8).

Рисунок 8. Изображения РЭМ (а) и внешний вид плёнок (б) нитевидных кристаллов перовскита, полученных при различном времени выдерживания нитевидных кристаллов MAPbI₃ в растворе MABr.

В разделе «Влияние равновесий в растворе на тип и состав кристаллизующихся фаз» рассмотрены взаимоотношения кристаллизующихся фаз раствора. Тип И состава маточного кристаллизующегося кристаллосольвата при различном соотношении PbI₂/MAI в растворе может быть объяснён путём рассмотрения равновесии различных иодоплюмбатных комплексов в растворе (рис. 9). Так, при небольшом соотношении MAI/PbI2 в растворе стабильными являются крупные полиядерные иодоплюмбатные комплексы (кластеры $[Pb_{18}I_{44}]^{8-}$), что приводит к кристаллизации из таких растворов кластерного кристаллосольватов (MA)8Pb18I44:xGBL и (MA)8-zPb18-6/2I44-6-z·VGBL. При увеличении концентрации MAI крупные кластеры распадаются с образованием небольших полиядерных комплексов ([Pb₂I₆]²⁻, [Pb₃I₈]²⁻ и т.п.), что приводит к кристаллизации кристаллосольвата (MA)₂Pb₃I₈·2GBL со структурным мотивом $\{Pb_3I_8^{2-}\}_{\infty}$. Дальнейшее увеличение концентрации МАІ приводит к полной диссоциации полиядерных комплексов до РЫ4²⁻, что приводит моноядерных комплексов вида PbI₃⁻ и к

кристаллизации перовскита MAPbI₃ из таких растворов. Таким образом, в зависимости от структурных блоков, присутствующих в растворе, из раствора могут кристаллизоваться разные фазы, а соотношение PbI₂/MAI в растворе таким образом определяет тип образующейся фазы.

Рисунок 9. Равновесия иодоплюмбатных комплексов в растворе PbI₂/MAI в GBL.

Полученные в ходе исследования системы MAI – PbI₂ – GBL данные о связи равновесий в растворе и особенностей кристаллизации можно обобщить в виде схемы, представленной на рис. 10.

Рисунок 10. Схема фазовых превращений в системе $MAI - PbI_2 - GBL$ (a) и в системах $MAI - PbI_2 - DMSO$ и $MAI - PbI_2 - DMF$ (б).

Таким образом, чтобы избежать формирования кристаллосольватов с кластерной структурой, необходимо, чтобы в растворе отсутствовали крупные кластерные полиядерные комплексы. В соответствии со схемами, представленными на рис. 9 и 10 а, такая ситуация наблюдается при наличии в растворе избытка анионов I⁻ (рис. 10, правая часть схемы), а также при

высокой температуре (рис. 11 а, стрелка 4). Проведённые эксперименты подтвердили данное предположение: результаты рентгенофазового анализа и растровой электронной микроскопии показали, что методы кристаллизации раствора MAPbI₃ при температуре 70 °C, а также раствора MAPbI₃, содержащего полуторакратный избыток MAI, позволяют получить сплошные и однородные плёнки перовскита MAPbI₃ без примеси PbI₂.

В случае кристаллизации плёнок MAPbI3 из DMF избыток MAI также морфологию получаемых плёнок. позволяет улучшить Так. при кристаллизации плёнок из растворов с соотношением. близким к $PbI_2/MAI = 1:1.$ протекает кристаллизация фаз (MA)₂Pb₃I₈·DMF и МАРЫ₃ DMF, имеющих игольчатую форму кристаллов, обусловленную ленточными структурными мотивами {Pb₃I₈²⁻}_∞ и {Pb₂I₆²⁻}_∞, что приводит к неоднородной морфологии плёнок. Однако при увеличении доли MAI, то есть при уменьшении соотношения PbI₂/MAI в растворе, возможна кристаллизация фазы (MA)₃PbI₅·DMF, которая не имеет игольчатую форму кристаллов ввиду иной организации кристаллической структуры.

В ходе изучении кристаллизации растворов перовскитов смешанного катионного и смешанного анионного составов установлен фазовый состав продуктов кристаллизации в зависимости от состава раствора (рис. 11).

Рисунок 11. Продукты кристаллизации растворов гибридных перовскитов чистого, а также смешанного катионного и смешанного анионного составов из DMF (а) и DMSO (б)

Дополнительно обнаружено, что в процессе кристаллизации I/Br и MA/FA составов наблюдается протекание двух параллельных процессов, приводящих к образованию фазы кристаллосольвата и фазы перовскита. Одновременное образование двух отличных по составу фаз неминуемо ведёт к возникновению неоднородностей в итоговых плёнках перовскита и может приводить к ухудшению их функциональных свойств. Полученные знания вносят существенный вклад в понимание процессов кристаллизации гибридных перовскитов смешанного состава и должны учитываться при дальнейшей разработке растворных методов получения материалов на основе перовскитов различного состава.

Выводы:

1) Установлено при летальном исследовании процессов кристаллизация гибридных перовскитов различного катионного и анионного состава из диметилсульфоксида, диметилформамида и оксолан-2-она в диапазоне температур 25-90 °C формирование 14 промежуточных фаз – кристаллосольватов состава: PbI₂·2DMSO, PbI₂·DMF, (MA)₂Pb₃I₈·DMSO. MAI.DMSO. MAPbI₃·DMF, (MA)₃PbI₅·DMF. (MA)₂Pb₃I₈·2DMF, (FA)₂Pb₃I₈·4DMF, FAPbI₃·2DMF, (FA)₅Pb₂I₉·0,5DMSO, FA₂PbBr₄·DMSO. $(MA)_{8}Pb_{18}I_{44} \cdot xGBL$, $(MA)_{8-z}Pb_{18-\delta/2}I_{44-\delta-z}$, vGBLи $(MA)_2Pb_3I_8 \cdot 2GBL;$ ИЗ них впервые получено 10 новых фаз кристаллосольватов и установлена их кристаллическая структура.

2) Предложена феноменологическая классификация структур промежуточных фаз – кристаллосольватов, обнаруженных в системах $MAX - PbX_2 - S$ и $FAX - PbX_2 - S$ ($X = I^-$, Br^- ; S = DMSO, DMF, GBL), основанная на их описании в виде искажённых плотнейших упаковок из анионов (I^- , Br^-), органических катионов (MA^+ , FA^+) и молекул растворителя DMSO и DMF с варьирующимся заполнением октаэдрических пустот ионами свинца.

3) Установлено в результате комплексного анализа процессов формирования светопоглощающих слоёв гибридных на основе перовскитов, что важнейшим фактором, влияющим на состав и морфологию итоговых плёнок гибридных перовскитов, получаемых растворными методами, является химическая природа использованного апротонного растворителя, который определяет структуру промежуточных анионных комплексов, сложных полиядерных кластеров твердых И фаз кристаллосольватов в широком диапазоне условий. Обнаружено, что гибридные перовскиты наследуют морфологию кристаллосольватов в силу топотактического характера разложения промежуточных твёрдых фаз, что позволяет использовать данный эффект для получения светопоглощающих слоев на основе гибридных перовскитов с заданным составом и микроструктурой.

4) Показано, что основными факторами экспериментального контроля, положенными в основу разработанных методик осаждения светопоглощающих слоёв улучшенной микроструктурой с И функциональными характеристиками и непосредственно влияющими на фазовый состав, структуру и морфологию получаемых материалов на основе гибридных перовскитов, являются катионный и анионный состав раствора, растворителя прекурсорного природа И температура, определяющие особенности формирования совокупности целевой кристаллической фазы и функциональные свойства солнечных батарей на их основе.

Список цитированной литературы:

- Brenner T.M. et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties // Nat. Rev. Mater. Macmillan Publishers Limited, 2016, 1, №1, 15007.
- [2] Correa-Baena J.-P.P. et al. The rapid evolution of highly efficient perovskite solar cells // Energy Environ. Sci. Royal Society of Chemistry, 2017, 10, №3, 710–727.
- [3] Best Research-Cell Efficiency Chart. http://www.nrel.gov [дата обращения: 12.08.2021].
- [4] Park N.G. Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells // Adv. Energy Mater, 2020, 10, №13, 1–14.
- [5] Feng W. et al. Perovskite crystals redissolution strategy for affordable, reproducible, efficient and stable perovskite photovoltaics // Mater. Today, 2021, 1–25.
- [6] Ciccioli A., Latini A. Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH3NH3PbX3: review-article // J. Phys. Chem. Lett. American Chemical Society, 2018, 9, №13, 3756–3765.
- [7] Saidaminov M.I. et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth // Chem. Commun. Royal Society of Chemistry, 2015, 51, №100, 17658–17661.
- [8] Murali B. et al. Single Crystals: The Next Big Wave of Perovskite Optoelectronics // ACS Mater. Lett. 2020, 2, №2, 184–214.
- [9] Zhang X. et al. Controlled Synthesis and Photonics Applications of Metal Halide Perovskite Nanowires // Small Methods. 2019, 3, №1, 1800294.

Список публикаций по теме работы:

- <u>A.A. Petrov</u>, N. Pellet, J.-Y. Seo, N.A. Belich, D.Yu. Kovalev, A.V. Shevelkov, E.A. Goodilin, S.M. Zakeeruddin, A.B. Tarasov, M. Graetzel. New insight into the formation of hybrid perovskite nanowires via structure directing adducts // *Chemistry of Materials*, 2017, 29, 2, 587–594 (IF = 9,6; Q1).
- 2) <u>A.A. Petrov</u>, I.P. Sokolova, N.A. Belich, G.S. Peters, P.V. Dorovatovskii, Y.V. Zubavichus, V.N. Khrustalev, A.V. Petrov, M. Grätzel, E.A. Goodilin, A.B. Tarasov. Crystal Structure of DMF-Intermediate Phases Uncovers the Link Between CH₃NH₃PbI₃ Morphology and Precursor's Stoichiometry // *Journal of Physical Chemistry C*, 2017, 121, 20739-20743 (IF = 4,2; Q1).
- 3) <u>A.A. Petrov</u>, S.A. Fateev, V.N. Khrustalev, Y.Li, P.V. Dorovatovskii, Y.V. Zubavichus, E.A. Goodilin, A.B. Tarasov. Formamidinium Haloplumbate Intermediates: The Missing Link in a Chain of Hybrid Perovskites Crystallization. // Chemistry of Materials, 2020, 32, 18, 7739-7745 (IF = 9,6; Q1).
- 4) S.A. Fateev, <u>A.A. Petrov</u>, V.N. Khrustalev, P. V. Dorovatovskii, Y. V. Zubavichus, E.A. Goodilin, A.B. Tarasov. Solution Processing of Methylammonium Lead Iodide Perovskite from γ-Butyrolactone: Crystallization Mediated by Solvation Equilibrium // *Chemistry of Materials*, 2018, 30, 5237–5244 (IF = 9,6; Q1).

Избранные тезисы докладов на международных конференциях:

- <u>A.A. Petrov</u>, A.B. Tarasov, E.A. Goodilin, M. Graetzel. New insight into the formation of hybrid perovskite nanowires via structure directing adducts. // Международная конференция по перовскитной тонкоплёночной фотовольтаике "ABXPV17", Валенсия, Испания, 1–2 марта 2017. [Электронный pecypc: http://www.nanoge.org/ABXPV17/program/posterabstracts]
- <u>Petrov A.A.</u>, Fateev S.A, Tarasov A.B. Processing of MAPbI₃ from γ-Butyrolactone: Crystallization Mediated by Solvation Equilibrium. // 4-я международная конференция по перовскитным солнечным элементам и оптоэлектронике "PSCO-2018", Лозанна, Швейцария, 30 сен. – 2 окт. 2018 [Электронный ресурс: https://www.psco-conference.org/]
- <u>Petrov A.A.</u>, Fateev S.A., Tarasov A.B. Crystallization of hybrid perovskites from aprotic solvents: new intermediate phases. Сборник тезисов Московской осенней международной конференции по перовскитной фотовольтаике "MAPPIC-2019", М.: «КДУ», «Добросвет», 2019, с. 35.

Благодарности

Автор благодарен Алексею Борисовичу Тарасову и Евгению Алексеевичу Гудилину за всестороннюю поддержку и помощь в обсуждении результатов, коллективу Лаборатории новых материалов для солнечной энергетики ФНМ МГУ (в частности, Сергею Анатольевичу Фатееву, Артёму Алексеевичу Ординарцеву, Николаю Андреевичу Беличу, Екатерине Игоревне Марченко и Алексею Юрьевичу Гришко), а также бывшим членам коллектива лаборатории (Юлии Павловне Соколовой и Никите Михайловичу Степанову) за участие в экспериментах и обсуждении полученных результатов. сотрудникам Курчатовского центра синхротронных исследований (Я.В. Зубавичусу, П.В. Дороватовскому), Российского университета дружбы народов (В.Н. Хрусталёву) и К.А. Лысенко проведении рентгеноструктурных помошь за в экспериментов, в т.ч. с использованием синхротронного излучения, и установлении структуры кристаллосольватов, сотрудникам лаборатории проф. М. Гретцеля в Федеральной политехнической школе Лозанны (М. Гретцелю, М.И. Дару, Ш.М. Закируддину, Дж.-Ю. Сео, Н. Пеллету и А. Уммадизингу) за помощь в проведении экспериментов по синтезу и исследованию нитевидных кристаллов гибридных перовскитов.

Автор благодарен своим родителям (А.В. Петрову и Г.П. Петровой), а также всем друзьям за моральную поддержку. Также автор благодарит преподавателей Института химии Санкт-Петербургского государственного университета и Факультета наук о материалах МГУ имени М.В. Ломоносова за образование, которое было дано автору в рамках обучения в бакалавриате, магистратуре и аспирантуре.