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Abstract

The Bashkir anticlinorium is an extensive outcrop of
Precambrian rocks within the Southern Urals, located
near the south-eastern edge of the East European Platform
(EEP). The Bashkir anticlinorium is subdivided by the
Zyuratkul fault into two parts: the Bashkir (western part)
and Uraltau (eastern part) Uplifts. The Late Precambrian
strata of the Bashkir Uplift were formed at a passive
margin of the Volga-Uralian part of Baltica. In contrast,
the Late Precambrian strata of the Uraltau Uplift were
formed far from its present-day location. Later, the
Uraltau Uplift block moved along the Zyuratkul fault to
its present-day position with a large-amplitude displace-
ment. This study presents the first results of the integrated
(U-Pb age, Hf-isotope and trace-elements contents) study
of detrital zircons (dZr) from the Upper Ordovician
sandstones of the northern part of the Uraltau Uplift. The
integrated characteristics of the studied dZr provide new
constraints for their primary sources. A comparison of
obtained data with rock types, U-Pb and Hf model ages of
the crystalline complexes of the of Volga-Uralia base-
ment, as well as characteristics of dZr from Late

Precambrian strata of the Bashkir Uplift and Kazakhstan
have revealed that the Upper Ordovician sandstones of
the northern part of the Uraltau Uplift contain dZr “alien”
to crystalline complexes of Volga-Uralia, Kazakhstan,
and Late Precambrian strata of the Bashkir Uplift. The
sources of these “alien” dZr were other crustal blocks.
A very high similarity of the age spectra of dZr from the
Upper Ordovician sandstones, which overlain the Late
Precambrian rocks units of the Uraltau and Bashkir
Uplifts allows concluding that the spatial conjunction of
the Bashkir and Uraltau Uplifts had occurred before the
Late Ordovician time. Post-Upper Ordovician sedimen-
tary complexes of the Bashkir and Uraltau Uplifts were
sourced from identical feeding provinces in the same
sedimentary basin, sealing its composite pre-Upper
Ordorvician heterogeneous basement.
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1 Introduction and Geological Settings

The Bashkir anticlinorium (BA) is located in the west of the
Southern Urals (Fig. 1a). The BA is an extensive outcrop of
Precambrian rocks, traditionally interpreted as a relic of a
Late Precambrian passive margin of Baltica (Precambrian
basement of the East European Platform) and its Early
Precambrian basement (Puchkov 2010), or a relic of an
inland rift-like basin, transformed at the beginning of the
Paleozoic into a passive margin of Baltica (Ivanov 1998).
The BA is divided into two parts by the Zyuratkul fault:
Bashkir Uplift and the northern Uraltau Uplift (Figs. 1b, c).
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To the west of the Zyuratkul fault within the Bashkir
Uplift, the Upper Precambrian Formations occur and did not
experience Pre-Ordovician deformations and metamorphism
(Puchkov 2010). Their lower part is composed of predomi-
nantly sedimentary (including the bottom level of the Early
Riphean) non-metamorphosed rocks interpreted as a
strato-typical Riphean section (Stratotype 1983; Ivanov
1998; Maslov 2004; Puchkov 2010). The upper part is
composed of terrigenous formations of the Upper Vendian
Asha Group (Maslov 2004; Puchkov 2010) or Upper
Vendian-Cambrian in age (Kuznetsov and Shazillo 2011).
Late Precambrian Formations that are unevenly

metamorphosed and experienced Pre-Ordovician deforma-
tions (Golionko and Artemova 2016; Puchkov 2010) are
widespread eastward the Zyuratkul fault within the northern
Uraltau Uplift (Uraltau Uplift hereafter). Middle Riphean
volcanic and intrusive rocks (Mashak, Shatak, and Kuvash
Formations) are widely represented here (Ivanov 1998;
Maslov 2004; Puchkov 2010).

In the western and south-western Bashkir Uplift, the
Upper Precambrian Formations are covered by the Paleozoic
strata, the section of which begins with low-thickness Upper
Emsian quartzous sandstones (Takaty Formation) (Kuznet-
sov et al. 2014a, b; Puchkov 2010). At the same time, in the

Fig. 1 Scheme of the geological
structure of the northern part of
the Western-Uralian megazone of
the Southern Urals (the Bashkir
anticlinorium) and the positions
of the samples discussed in the
text (B). Compiled using data
from V.I. Kozlov (small-scale
geological map, Ufa sheet), as
well as authors’ own materials.
Faults: ZF = Zyuratkul,
MUF = Main Uralian. Insert in
the upper left corner: stratigraphic
charts of the Bashkir and Uraltau
Uplifts for Lower and Middle
Riphean (C). A Index scheme

8 N. B. Kuznetsov et al.



southern Bashkir Uplift and within the Uraltau Uplift, the
Paleozoic section begins with a thin-thickness of Upper
Ordovician quartzous sandstones (Kuznetsov et al. 2016;
Puchkov 2010). The oldest sedimentary units overlying the
Asha Group are Lower Devonian in age (Takaty Formation)
in the western part of the Bashkir Uplift and Middle
Ordovician age in the southern one. The most striking dif-
ference between the Paleozoic Formations that overlay the
Upper Precambrian complexes within the Bashkir and Ural-
tau Uplifts is the nature of parallel and angular unconformi-
ties between these rocks and the underlying formations.

Differences in the structure of the Precambrian Forma-
tions of the western and eastern parts of the BA (see Fig. 1C)
made it possible to suggest its composite structure (Kuz-
netsov 2009). In accordance with this, the Bashkir Uplift is a
relic of a Late Precambrian passive margin of Baltica
(Kuznetsov et al. 2013; Romanyuk et al. 2013), and the
Uraltau Uplift is a relic of an alien structure in relation to the
contiguous part of Baltica. The Uraltau Uplift block moved
along the Zyuratkul fault to its present-day position with a
large-amplitude dextral displacement (Kuznetsov 2009).

To develop and to test the idea of a composite structure of
the BA (i.e. to unravel the ultimate origin and nature of the
Uraltau Uplift block and details of its evolution, as well as to
constrain the time of conjugation of the Bashkir and Uraltau
Uplifts), we have studied detrital zircons (dZr) from different
stratigraphic units of the Bashkir and Uraltau Uplifts
(Romanyuk et al. 2013, 2014, 2017, 2018, 2019a, b, 2000;
Kuznetsov et al. 2012, 2013, 2014a, b, 2016, 2017a, b, 2018).
This paper deals with the first results of the integrated detrital
zircons study of the Upper Ordovician sandstones (sample
K12-006), which overlap unevenly metamorphosed Late
Precambrian rocks of the Uraltau Uplift with an angular
unconformity. The integrated characteristics of individual
detrital zircon grains aim to better identify the provenance of
dZr and to try to reveal relationships of affinity or alien rela-
tionships between studied strata and those of Volga-Uralia,
Kazakhstan and the Western Urals. This paper focuses on a
comparison of age spectra of dZr from Ordovician sandstones
of the Uraltau Uplift (sample K12-006) and age spectra of dZr
from Ordovician sandstones of the Bashkir Uplift (sample
K12-025), which overlap non-metamorphosed Late Precam-
brian rocks with a parallel unconformity.

2 Methodology

The study was carried out using the TerraneChron®, ana-
lytical approach (Griffin et al. 2000, 2002, 2004, 2006, 2007;
Belousova et al. 2002, 2006) developed at the
CCSF/GEMOC Center (Macquarie University, Sydney).
The methodology integrates in situ U-Pb age, trace-element
and Lu-Hf-isotope analyses on zircons. Such an integrated

approach makes it more reliable to identify the source rocks
of detrital zircons and to reconstruct the evolution of the
supplying provinces than can be done based on U-Pb ages of
detrital zircons only (Veevers et al. 2005, 2006; Belousova
et al. 2015; Romanyuk et al. 2018; Kuznetsov et al. 2018,
2019). The study of dZr was carried out using LA-ICP-MS
technique, a description of which and detailed methodology
are given in previous publications (Griffin et al. 2000;
Jackson et al. 2004).

U-Pb ages with discordance D: 10% > D > −5% are
used to plot the histograms and probability density plots
(PDP) of the ages (Ludwig 2012; Vermeesch 2012, 2018).
For zircons with age over 1 Ga, the used age is calculated
based on 206Pb/207Pb ratio, for zircons with age younger than
1 Ga, 206Pb/238U ratio was used.

Attempts to determine such characteristics of individual
zircon grains as indicators of magmatic, metamorphic or
hydrothermal (sometimes called «metasomatic») nature of a
crystal (or even separate its core/rim), a forecast of the type of
parental rocks of zircon, assessment of crystallization tem-
peratures, zoning, etc., by the morphology of the crystal and
metamict zones features in it, optical, CL-and BSE-images,
contents of trace and REE for zircon, the composition of
gas/fluid and inherited inclusions and other data, have a very
long history (Heaman et al. 1990; Hoskin et al. 2000; Hoskin
and Ireland 2000; Griffin et al. 2000, 2004; Liu et al. 2001;
Belousova et al. 2002, 2006, 2010, 2015; Corfu et al. 2003;
Hoskin and Schaltegger 2003; Liu and Xu 2004; Watson
et al. 2006; Hawkesworth and Kemp 2006; Harrison et al.
2007; Grimes et al. 2007, 2015; Ferry and Watson 2007;
Fedotova et al. 2008; Fu et al. 2008; Skublov et al. 2012;
Fornelli et al. 2014; Chapman et al. 2016 and many others).
But unlike the study of U-Pb and Lu-Hf isotopic systems of
zircons, where there have been developed common adopted
technologies, the interpretation of concentrations of trace and
REE elements in zircons has not been yet developed up to a
generally accepted technology.

There were many attempts to develop some criteria to
distinguish magmatic, metamorphic and hydrothermal zir-
cons (e.g. Rubin et al. 1989, 1993; Corfu and Davis 1991;
Claoue-Long et al. 1990; Kerrich and King 1993; Ramezani
et al. 2000; Hu et al. 2004; Hoskin 2005; Schaltegger et al.
2005; Pettke et al. 2005; Kebede et al. 2007; Pelleter et al.
2007; Fu et al. 2009; Rubatto 2017 and many others). For
example, Hoskin and Schaltegger (2003) had tried to sum-
marize textural and compositional characteristics of
hydrothermal zircons, but they had to conclude that the
characteristics are not definitive. The hydrothermal zircons
may be zoned or unzoned on cathodoluminescence images
(CLI); spongy in texture; anhedral or faceted in morphology;
and either high or low in common-Pb. By now, there are no
doubtless criteria to distinguish between metamorphic and
magmatic zircons.
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Nevertheless, it has been reliably established that certain
statistical trends and appreciable differences in the
trace-elements contents are recorded in zircons from certain
types of rocks and different origins (Hoskin and Ireland
2000; Hoskin 2005; Belousova et al. 2002, 2006, 2015;
Schulz et al. 2006; Fedotova et al. 2008; Kaczmarek et al.
2008; Kostitsyn et al. 2015; Fershtater et al. 2012; Grimes
et al. 2015, and others). Thus, in general, Rare Earth Ele-
ments (REE) contents in zircons increase from basic rocks
(gabbroids and basaltoids), in which the total content of REE
is (5–10) � 100 ppm up to (1–2) � 1000 ppm, to felsic
rocks (granitoids and their effusive analogs), in which the
total content of REE is (2–5) � 1000 ppm. Furthermore, the
REE contents in zircons from pegmatites and nepheline
syenites can reach even 1–3 mass %. For such rocks as
kimberlites, the typical total content of REE in zircons is
usually less than 50 ppm. In zircons from carbonatites and
lamproites the total REE content is larger and can increase
up to 500 ppm (Belousova et al. 2002, 2015), but its average
value is 100–250 ppm (Hoskin and Ireland, 2000).

An important indicator is the Th/U ratio (see the review
by Kirkland et al. 2015; Rubatto 2017), which varies from
0.1 to 1 in most zircons. Low Th/U ratios are statistically
considered to be characteristic of zircon crystals of meta-
morphic origin, unlike zircons of magmatic origin. However,
there is still no consensus on the threshold Th/U value: in
different works, values Th/U from 0.5 to 0.1 are established.
Thus, value 0.5 in (Kirkland et al. 2015), 0.2 in (Hoskin and
Schaltegger 2003), 0.1 in (Teipel et al. 2004). In general, the
accumulated data (see Rubatto 2017) indicate that Th/U
values from 0.5 to 0.1 are fixed in zircons of both magmatic
and metamorphic origin. For example, zircon rims from the
Sulu UHP mafic and felsic rocks show higher values of Th/U
up to 0.4 (Zhang et al. 2009). On the other hand, zircons
crystallized in granites at low temperatures are characterized
by higher U contents and lower Th, which, as a result, leads
to lower Th/U values in low-temperature crystals (Harrison
et al. 2007). Therefore, in the diagrams, we mark the interval
Th/U from 0.5 to 0.1 as «Zircons magmatic or metamorphic
origin» and believe that only zircons with a ratio Th/U < 0.1
can have a metamorphic origin with a high degree of
probability.

High ratios of Th/U > 1.5, together with other charac-
teristics, are statistically inherent in zircons from mafic rocks
(Heaman et al. 1990; Kaczmarek et al. 2008; Linnemann
et al. 2011). It can’t be ignored that in the zircons with high
Th/U are sometimes formed in environments of high degrees
of metamorphism (Wanless et al. 2011).

Very low U/Yb ratios are recorded for zircons from
oceanic basalts NMORB (U/Yb < 0.1) (Grimes et al. 2015).
Higher values U/Yb are not unique and can be inherent in a
wide range of rocks. However, in general, an increase in the
ratio of U/Yb and the Hf content in zircons indicate the

fractionation of their parent magmas and reflect the trends in
their composition in the direction from the primitive crust
towards a more enriched crust. The diagrams «U/Yb versus
Hf» and «U/Yb versus Nb/Yb» are most statistically effec-
tive for distinguishing between zircons from oceanic basalts
and zircons from the continental crust (Grimes et al. 2015).

Important information on zircons is carried by the REE
spectra, which are represented in the form of values nor-
malized to chondrite (we use the values for CI-chondrite
from (McDonough and Sun 1995)). A monotonic increase in
the content of elements from light to heavy is typical for the
normalized REE spectra of zircons, which is complicated by
two anomalies: positive Ce and negative Eu.

The REE spectra of zircons from granitoids are highly
ordered for the heavy REEs: in the interval from Dy to Lu,
the slope of the zircon spider diagrams is rather stable. Its
value is characterized by the Lu/Dy (sometimes Yb/Sm or
Lu/Gd) ratio, and the contents of the heaviest REEs (Yb and
Lu) are used as a marker for classifications. Statistically, the
zircon that is crystallized in the igneous rock has a steeper
slope for heavy REEs (larger Yb/Sm values) than the crystal
formed in rocks of high degrees of metamorphism (Rubatto
and Hermann 2007; Rubatto 2017).

For zircons of high-temperature metamorphic origin,
which are crystallized in the presence of garnet, the lower
heavy REE and Y are described (Rubatto 2002; Rubatto and
Hermann 2007; Fedotova et al. 2008; Skublov et al. 2012;
Fornelli et al. 2014), because the garnet competes with zir-
con on these items. For eclogites, also a low Th concentra-
tion (no higher than 3 ppm on average) and a significant
decrease in the concentrations of all REE (to 22 ppm) and
particularly LREE (<2 ppm), and relatively low concentra-
tions of Y (34 ppm), U (100 ppm), and P (41 ppm) at an
elevated Hf concentration (11 400 ppm on average) have
been revealed (Skublov et al. 2012).

The discriminative «(Sm/La)N versus La» and «Ce/Ce*
versus (Sm/La)N» diagrams based on distinct REE patterns
from magmatic and hydrothermal zircons were presented in
(Hoskin 2005). Further researches revealed that not all data
points reported for zircons which are thought to be
hydrothermal ones fill in the «hydrothermal» area in this
discriminate diagram (Fu et al. 2009). However, the pro-
posed in (Hoskin, 2005) signs of «uplifted» LREEs spectra
(a higher content of La (La > * 2 ppm) and a lower
(Sm/La)N ((Sm/La)N < 10))) and weak Ce/Ce* anomaly
(Ce/Ce* < 10) are the effective indicators to suppose if not a
pure hydrothermal origin of zircon, but at least a
hydrothermal imprint on the zircon. Metamictic zircons also
often show «uplifted» LREE spectra.

The above information was summarized in the scheme of
classification shown in Fig. 2 to distinguish between a
magmatic/metamorphic/hydrothermal origin of zircon. For
zircons whose magmatic origin is supposed, the CART
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algorithm (Belousova et al. 2002) was applied to predict a
type of parental zircon rocks. The main purpose of using the
CART algorithm is the primary separation of zircons, the
parental rocks for which there could be rare rock complexes
(«specific» zircons), from zircons from granitoids and their
effusive material analogues, which are the main sources of
zircon. The latter, as a result of the classification, are subdi-
vided by the percentage of SiO2 in the rock into three groups
—rocks with reduced (SiO2 < 65%), normal (SiO2 = 65–
75%) and increased (SiO2 > 75%) SiO2 contents. For the
sake of brevity, these groups are called, respectively, «dior-
ite», «granite» and «leucogranite» and corresponding zircons
as «dioritic», «granitic», «leucogranitic».

Unlike zircons from «granites» or «diorites», which form
large groups, are determined and interpreted statistically, the
identification of «specific» zircons requires «manual» testing
and debugging, checking the occurrence of measured
trace-elements concentrations at boundary marker values for
the concentrations of the elements the CART algorithm
operates on. For example, a content of Y = 4433 ppm is the
marker to distinguish between «granite» and
«syenite/monzonite». If content Y in zircon is a little bit less
than 4433 ppm, for example, Y = 4400 ppm, then this

zircon is classified as «?syenite/monzonite» and is addi-
tionally checked in other classification diagrams (Summary
REE versus Ti and REE spectra). The reliability of this
approach and the percentage of misclassification are dis-
cussed in Belousova et al. (2002).

3 Sampling Rocks; Separation, Imaging,
Morphology and Analytical Results
of Detrital Zircons Study

3.1 Sampling Rocks, Imaging and Morphology
Zircons, Measurements, Standards

Sample K12-006 (*1.5 kg) was collected from the
light-yellow fine-middle-grained quartzous sandstones in the
basal level of the Paleozoic section (see sample location in
Fig. 1) on the south-western slope of the Yuryuzan syncline
(53°36′21.15″ N and 58°46′57.30″ E) on the left side of the
Tyulyuk spring (a right tributary of the Yuryuzan River).
Approximately 300 zircon grains were separated from the
sample (technology is described in Romanyuk et al. 2018),
of which 202 randomly selected grains were mounted into an
epoxy disk.

Zircons were studied with a microscope and in cathode
rays and backscattered electrons (BSE). All grains are
rounded, mostly small (<100 µm). Almost all dZr contain
inherited inclusions, metamict zones, and in some cases are
broken by cracks. These are indications that zircons partic-
ipated in magmatic/metamorphic processing (Corfu et al.
2003). For dating, we selected grains in which we managed
to map out areas (Ø � 40 µm) using CLI without obvious
metamictization, violations, inclusions and cracks.

At the first stage, the simultaneous measurement of the
U-Pb-isotope system and trace-elements contents of dZr was
executed, at the second stage, a separated study of the
Lu-Hf-isotope system of the selected dZr were executed.
Measurements of the parameters of the U-Pb-isotope system
in zircons were carried out with the Red-JG-1 zircon stan-
dard for calibration (Jackson et al. 2004; Elhlou et al. 2006),
and Mud-Tank and 91,500 as measured zircons for moni-
toring. During the measurements, the mean ages were
Mud-Tank = 737 ± 5 Ma (n = 7) and 91,500 = 1059 ± 8
Ma (n = 7), which agrees with the ages of these standards
(Wienedbeck et al. 1995, 2004; Jackson et al. 2004; Black
et al. 2004; Yuan et al. 2008; Horstwood et al. 2016).

Measurements of the Lu–Hf-isotope system were moni-
tored by Mud-Tank and Temora II zircon standards. During
the measurements, the average ratio of 176Hf/177Hf was
0.282551 ± 0.0000086 (n = 4) for Mud-Tank and
0.282619 ± 0.000025 (n = 4) for Temora II, which is in

Fig. 2 The scheme of classification of detrital zircons (dZr) from
sample K12-006 based on the CART algorithm (Belousova et al. 2002);
a number of dZr of each type in studied samples are marked by green
bold italic letters
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agreement with the values for these zircon standards (Jack-
son et al. 2004; Yuan et al. 2008). Measurement of the
content of trace elements in dZr was carried out for 22
elements, the NIST standard was used for external control.
Data processing was performed using the commercial pro-
gram “GLITTER” (Griffin et al. 2008) and the programs
(Ludwig 2012; Vermeesch 2012, 2018) available in the
public free access.

3.2 U–Pb Age Results

A total of 70 analyses were performed. For 12 grains, a large
analytical error (>50 Ma, #51) or strongly discordant anal-
yses (#17, 24, 51, 77 and 41) have been obtained (Fig. 3).
These analyses were excluded from consideration. The
remaining 58 analyses were used to plot the age histogram
and the PDP (Fig. 4a). The youngest age is 530 ± 4 Ma
(D = 6.8%, #30) and the oldest is 2885 ± 31 Ma
(D = −0.3%, #50).

3.3 Zircon Trace-Element Content and Parental
Rock Type Classification

When studying the trace-elements content (Figs. 4b, 5, 6, 7,
8, 9, 10, 11 and 12), the La content was not determined for

grains # 19, 28, 43, 44, 45, 46, 56, 84, 95 and 101 (the
content is below the detection limit). Further, for calculating
Ce anomalies, the La content for these zircons was adopted
at 0.01 ppm. Five grains have yielded anomaly high P and Y
contents (Table 1), which may suggest an apatite inclusion in
the LA crater. They also show very high contents of total
REE and Ti (Fig. 7). They are marked as «apatite» in
Table 1.

Zircon #101 showed very low Th/U = 0.03 (Fig. 4b) and
it was classified as «metamorphic». It also differs from other
zircons in a high content of Hf (Fig. 9) and steep REE
spectra in heavy REE (Figs. 6 and 8).

Seven zircons (#14, 30, 34, 41, 49, 62 and 65) showed
elevated La content of more than 2 ppm and weak Ce/Ce*
anomalies less than 10. Their data points on discriminant
diagrams in Fig. 5 fall in a field far besides «Magmatic
zircons fields», so they were classified as «non-magmatic»
zircons. Two zircons (#30 and 49) from «non-magmatic»
zircons fit well to fields of «Hydrothermal zircons» in dis-
criminant diagrams of Fig. 5 and were classified as
«Hydrothermal zircons». The rest «non-magmatic» zircons
are marked as «Metamictic». There were revealed no zircons
with flat REE spectra in heavy REE (Figs. 6 and 8) that
would suggest their «HTM-Gr» origin, neither zircons with
the signature of NMORB (Fig. 12).

For the 58 detrital zircons having the most probable
magmatic origin, the CART classification (Fig. 2) indicates
that the parental rocks were most likely «granites» (24) and

Fig. 3 Results of the U-Pb dating of detrital zircons from the K12-006
sample. A—Concordia and ellipses (some with analysis numbers),
showing a 68.3% confidence interval for measurements. B, C and D (at
the grey background)—the enlarged fragments of Concordia. Classi-
fication of the zircons (see Table 1 and Fig. 2): “SM” = «syenite/mon-
zonite», “?SM” = «granite», but probably «syenite/monzonite»,
“Carb” = «carbonatite», “Metamict” = metamictic zircon, “Hydroth” =
hydrothermal zircon, “Apatite” = apatite inclusion in the LA sam-
pling, “Metam” = metamorphic zircon

Fig. 4 Histograms and the Probability Density Plot (PDP) of U-Pb
ages («conditioned» analyses only) (A) and Th/U values (B) of detrital
zircons from sample K12-006. PDP (green line) for sample K12-025
(Ordovician, Bashkir Uplift, Kuznetsov et al. 2016) is added in (A)

12 N. B. Kuznetsov et al.
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«diorites» (28) for the majority of zircons. In the classifi-
cation diagrams, zircons from «diorites» are characterized by
higher contents of Yb, Y, total REE and heavy REE com-
pared to zircons from «granites». As a specific, the parental
rocks were assigned «carbonatite» (1) and
«syenites/monzonite» (4). Characteristics for four «granitic»
zircons are very close to the thresholds values between
«granites» and «syenites/monzonite», so they were marked
as «?syenites/monzonite».

«Carbonatitic» zircon (#19) is clearly distinguished from
other zircons by low total REE (Fig. 7), low Lu (Fig. 8) and
Y (Fig. 9) contents. In contrast, «syenites/monzonite» zir-
cons have the upper total REE (Fig. 7) and Y (Fig. 9)
contents. No other clear signs of zircons were noted in other
discriminant diagrams such as «Ta versus Nb» (Fig. 10) and
others.

3.4 Hf Isotope Analysis of the Detrital Zircons

For dZr, the size of which allowed a second crater of 40 lm
size and the U-Pb age estimates yielded an acceptable con-
cordance, the Lu-Hf isotope zircon system was also studied
(Fig. 13a). Zircon #101 («metamorphic», age of 978 Ma)
has yielded a very high value of eHf = 19.6 ± 0.7. This
value is essential higher eHf of the depleted mantle of this
age and TDM

C = 0.6 Ga which is less than the U-Pb age of
the zircon. Together with other atypical characteristics of
this zircon (very steep spectra in Heavy REE (Figs. 6 and 8)

Fig. 5 Discriminant diagrams of «(Sm/La)N versus La (ppm)» (A) and «Ce/Ce⁎ versus (Sm/La)N» (B) for studied zircons from sample K12-006.
The two outlined pink and blue areas are defined by magmatic and «hydrothermal» zircons from the Boggy Plain Zoned Pluton (Hoskin 2005)

Fig. 6 «Lu/Dy versus Eu/Eu*» diagram for detrital zircons from
sample K12-006

Fig. 7 «Sum or total REE versus Ti» diagram for detrital zircons from
sample K12-006

14 N. B. Kuznetsov et al.



and very high contents of Hf (Fig. 9)), all these supposes a
complicated history or/and structure of this zircon.
Although CLI of this zircon did not show any inclusion
within the LA crater area, it is possible that a deeply located
inclusion does get in the LA sampling material, so we pre-
vent giving any meaningful interpretation to this zircon. One
more zircon has yielded strongly positive eHf = 13.7 ± 3.0
(#47) which is close to eHf of a depleted mantle of this age.
All others eHf are within interval (-9.0 + 8.8). No zircons
with strongly negative eHf were revealed that would yield
unreasonably very old TDM

C, and obtained estimates TDM
C

vary in the interval 1.1–3.4 Ga.

4 Discussion and Interpretation of Obtained
Analytical Data

The integrated isotope-geochemical characteristics of the
studied dZr were compared with known data on the com-
position, age and model ages of the crystalline complexes of
the Western Urals and Volga-Uralia, as well as with char-
acteristics of dZr from Riphean strata of the Northern
Kazakhstan (Fig. 13) and Bashkir Uplift (Fig. 14).

All data points of Archean dZr (10 zircons) from sample
K12-006 form a compact area in «Diagrams eHf» (Fig. 13a)
within values U-Pb ages 2.55–2.90 Ga and eHf −2.5 to
+2.5. This compact area does not match the known fields of
the Archean complexes Volga-Uralia: the «Tashlyar»,
«Aktanysh», «Bak-2» and «Kolyvan enderbites». The only 3
«dioritic» points are located back to back to the «Bak-1»
field and the «carbonanitic» point fits well to the «Bak-1»
field. The «Bak-1» field characterizes the quartz diorite of
the Bakal block. Note that the predicted type of parent rocks
of most of the Archean dZr is «diorites», which coincides

with the type of rocks of the Bakal block. However, we think
that available data does not allow us to identify quartz
diorites of the Bakal block as a local source. If the basement
of the Volga-Uralia has been the primary source of Archean
zircons for Upper Ordovician sandstones of Uraltau Uplift,
we would have seen a much wider variety of ages and Hf
isotope signs of dZr, including dZr with ages >2.9 Ga and
dZr with Hf isotopic signs of the oldest continental crust
(TDM

C > 3.5 Ga) that typical for the Volgo-Uralian base-
ment. Note that such zircons have been found in sandstones
of all Riphean stratigraphic levels in the Bashkir Uplift
(Fig. 14). So, the obtained data do not allow us to allocate
the basement of the Volga-Uralia and Riphean strata of the
Western Urals as the most probable primary source of
Archean dZr from sample K12-006. It is highly likely that it
was a Neoarchean block beyond the Volga-Uralia, com-
posed of mostly juvenile rocks of intermediate to mafic in
composition and including some alkaline rocks.

The data points of the Paleoproterozoic dZr form area in
«Diagrams eHf» (Fig. 13a) with a range of the values of eHf
from the maximum positive («DM» composition) to sub-
stantially negative values (eHf = −10) corresponding to the
Hf-model ages of the magma-generating substrate with
TDM

C = 3.0 Ga. Such arrays are a sign of mixing juvenile
and isotope-mature materials, which can occur in long-acting
volcanic arcs on continental margins or in collision orogeny
tectonic settings. A large body of geochronological data on
crystalline rocks occurring in Paleoproterozoic orogens has
been accumulated (Zhang et al. 2012). Most of these orogens
are composed of complexes with ages <2.0 Ga. Ages of 2.1–
2.0 Ga have been obtained within the EEP only for the
Volga-Sarmatian orogen (Bibikova et al., 2009; Terentiev
and Santosh, 2016; Terentiev et al., 2016a, b, 2017, 2018)
and the Taratash Orogen (Sindern et al. 2005; Tevelev et al.

Fig. 8 Chondrite-normalized
spider-diagram of REE contents
in detrital zircons from sample
K12-006

A Composite Structure of the Bashkir Anticlinorium: Insights … 15



2014, 2015, 2017; Khotylev and Tevelev 2017), which are
oldest among these orogens and closest to the Southern
Urals. Note that several data points fall directly into the field
of isotopic parameters of the rocks of the southern
Volga-Sarmatian collisional orogen (“VSO-field”). The age
interval of the Paleoproterozoic dZr of 1.85–2.15 Ga fit well
to a time interval of magmatic activity within the
Volga-Sarmatian and Taratash orogens. The obtained data
provide a very strong argument to consider the
Volga-Sarmatian and Taratash orogens as the most probable
source of Paleoproterozoic zircons in sample K12-006.
However, it is needed to note that Hf isotopes of the Pale-
oproterozoic dZr from sample K12-006 have not recorded

recycling of the Mesoarchean and older crust. This is diffi-
cult to explain because numerous dZr with signs of recycling
of the Mesoarchean, Paleoarchean and even Hadean (single
dZr) have been found in the Riphean strata of the Bashkir
Uplift and they are considered as sourced from the
Volga-Sarmatian and Taratash orogens (Fig. 14).

Numerous specific «carbonatite» zircons with ages of about
2.0, 2.5, 2.85 and 3.6 Ga were revealed in Riphean strata of
the Bashkir Uplift (Fig. 14). However, in sample K12-006,
only a single «carbonatite» zircon was found with an age of
about *2.7 Ga. Among the dZr from samples K12-006,
numerous zircons with ages younger than 1.65 Ga have been
found. These ages are absolutely atypical for the crystalline
complexes of Volgo-Uralia. The primary sources of these dZr
might be located either within the parts of the EEP that are
situated very far from the Southern Urals, or outside the EEP,
for example, in Kazakhstan. Erosional products of all these
rocks might have been recycled in the Upper Ordovician
Uraltau basin by well-developed long river systems.

For example, within Fennoscandia, the Mesoproterozoic
rapakivi granites and paragenetically associated migmatites
are widely developed (Sharkov 2010). The Sveconorvegian
domain is composed mainly of the Mesoproterozoic
(Danopolonian) and Early Neoproterozoic granite-
metamorphic complexes (Bogdanova et al. 2008). The
Volyn volcanic province in the southwestern part of Sar-
matia composes of the Late Neoproterozoic (Ediacaran)
basaltoids, volcanogenic-tuffogenic formations and felsic
rocks (Shumlyanskyy et al. 2016b). Relicts of the
Proto-Uralide-Timanide orogen, in the structure of which
Late Neoproterozoic-Cambrian granitoids and metamor-
phites are widely represented (Kuznetsov et al. 2014a), are
located in the northeastern margin of the EEP.

Small-volume crystalline complexes with ages <1.65 Ga
are known in Western Urals, as well as in some of the
Mesoproterozoic–Early Neoproterozoic (Riphean)

Fig. 9 Classification diagrams of Hf and Y contents in detrital zircons
from sample K12-006

Fig. 10 Classification diagrams of Ta and Nb contents in detrital
zircons from sample K12-006
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aulacogenes in the southeastern EEP (Gusikhin complex in
the Pachelma aulacogene, etc.). However, ages that are
available from those crystalline complexes form a very
narrow time interval of 1.2–1.45 Ga and these complexes
cannot be the only sources for numerous Mesoproterozoic
1.0–1.6 Ga dZr available in sample K12-006 (Fig. 13).
Three ages of dZr from sample K12-006 coincide well with
the age of intrusive rocks of the Berdyaush massif. However,
their Hf isotope signatures differ considerably from those
obtained for zircons from gabbro (eHf = 4.6 ± 1.0) and
from nepheline syenites, granite-rapakivi and quartz

syenite-diorites (eHf of −5.3 ± 0.7, −6.0 ± 0.9 and
−7.6 ± 1.4 respectively) (Ronkin et al. 2015a; b). There-
fore, it is unlikely that the Berdyaush complex was a source
of dZr in the K12-006 sample.

Other potential primary sources of the Mesoproterozoic
zircons might have been crustal blocks, which form now the
basement of the Scythian-Turanian plate or the Paleozoides
of Central Kazakhstan (the basement of the Epi-Paleozoic
Kazakhstan continent). A representative body of
geochronological data has already been accumulated for the
basement of the Epi-Paleozoic Kazakhstan continent, which
allows us to reconstruct the main stages of the formation of
its heterogeneous continental crust (Degtyarev et al. 2016,
2017). In accordance with these data (Fig. 13b), the base-
ment of the Kokchetau microcontinent located in a core of
the basement of the Epi-Paleozoic Kazakhstan continent is
composed of juvenile material of Late Proterozoic and
Mesoproterozoic intra-oceanic arcs. The earliest magmatic
episode (K1) is dated at 1.85–1.65 Ga, the next episode (K2)
lasted at least from 1.5 to 1.0 Ga. Its final phases occurred at
1.2–1.0 Ga and are known as the Tarim orogeny, relicts of
which are preserved in Northern Kazakhstan (the
North-Kazakhstan tectonic zone). The assembly of the
Kazakhstan continent as a large heterogeneous crustal block
and consolidation of its basement most likely took place
during this orogeny.

The study of dZr from the Mesoproterozoic–Early Neo-
proterozoic (Riphean) cover of the Kokchetau Massif (4
samples) (Kovach et al. 2017) revealed several Archean dZr,

Fig. 11 Diagram «U/Yb versus
Hf» in dZr. Field “Continental
survey”, arrows and inscriptions
after (Grimes et al. 2015, Fig. 2)

Fig. 12 Diagram of the ratios “U/Yb versus Nb/Yb” in dZr. Fields
“Magmatic arc” and “Mantle-zircon array” after (Grimes et al. 2015,
Fig. 6c)
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a small group of Late Proterozoic dZr (correlated with the
K1 episode) and a dominant population of the Mesopro-
terozoic zircons (correlated with the K2 episode) (Fig. 13b).
In the Late Neoproterozoic, the Kokchetau Massif collided
with the Stepnyak volcanic arc, then the UHP complexes of
a subduction zone were exhumed and became a source of
specific metamorphic zircons with anomalously low Th/U
ratios (Glorie et al. 2015). Later, extensive areas of the
Kazakhstan continent were intruded by Paleozoic granitoids
(Degtyarev et al. 2016, 2017).

Mesoproterozoic U-Pb ages and Hf isotope characteristics
of dZr from sample K12-006 are well consistent with those
from the Mesoproterozoic–Early Neoproterozoic (Riphean)
cover of the Kokchetau Massif.

The only exception is that no 1.5–1.65 Ga dZr have been
found in the Kokchetau Massif (a magmatic gap between K1
and K1 episodes), whereas several dZr with these ages have

been found in the K12-006 sample. The three youngest ages
of dZr from the K12-006 sample agree well with the time of
the collision between the Kokchetau Massif and the Step-
nyak volcanic arc. The zircons with extremely low Th/U
ratios sourced from the UHP complexes related to this event
have been reported by Glorie et al. (2015). There have been
no similar zircons found in the K12-006 sample. Note,
however, that there has been revealed one «specific» dZr
#30, classified as a zircon of «Hydrothermal» origin, which
may be related to the same collisional event.

There are no geochronological data available on the
deep-buried complexes of the basement of the
Scythian-Turanian plate. This plate is interpreted as a belt of
the Cadomian terranes, which extends from Europe along
the southern margin of the EEP into the Central Asian
Orogenic Belt as suggested by geophysical data and indirect
correlations (Kuznetsov and Romanyuk 2021).

b Fig. 13 A comparison of «Diagrams eHf» for detrital zircons from
sample K12-006 from Upper Ordovician strata of the Uraltau Uplift
(A) with «Diagrams eHf» for detrital zircons from Riphean strata of
Northern Kazakhstan (B), as well as with known ages of EEP basement
and Western Urals complexes (upper part of the figure), which are
possible sources of detrital zircons. A «Diagram eHf» for dZr from
sample K12-006. Grey oblique lines = lines of the Hf crustal model age
of the protolith TDM

C. Gray ellipses of the field of data points of ages
and TDM, estimated by the Sm-Nd isotopic system (complexes:
T = Tashlyar, Akt = Aktanysh, Bak-1 and Bak-2—quartz diorites of
Bakaly block) from (Bogdanova et al., 2010), for the southern part of
the Volga-Sarmatian orogen (VSO-field) from (Bibikova et al. 2009),
for Kolyvan enderbites (KE) from (Bogdanova et al. 2013). Gray
rectangles are the fields of data points of ages and eHf for rocks of the
Berdyaush complex of the Western Urals (G-gabbro, NS, GR,
QS-nepheline syenites, granites rapakivi and quartz syeno-diorites,
correspondently) from (Ronkin et al. 2015a; b). For other complexes of
the Western Urals, the age intervals are shown only in the upper part of
the figure. The dotted pattern shows the area correlated with the zircons
generated by the Taratash and Volga-Sarmatian collisional orogen.
B «Diagram eHf» for dZr from Riphean Group sandstones of the
Kokchetau Massif (samples EV1, ER1, Z13-22 and Z13-24) from
(Kovach et al., 2017), which characterize the basement of the
Kokchetau microcontinent. In the upper part of the figure, the bars
show the age intervals for the EEP and Western Urals complexes. EEP:
VSO, TO = complexes of the Volga-Sarmatian and Taratash orogens
(Bibikova et al. 2009; Tevelev et al. 2014, 2015, 2017; Terentiev and
Santosh 2016; Terentiev et al. 2016a, b, 2017, 2018; Khotylev and
Tevelev 2017); K, KN, NU, O = plutons and rapakivi-like granites:
Korosten, Korsun-Novomirgorod, Novo-Ukrainian, October plutons of
the Ukraine Shield (Bogdanova et al. 2004; Shumlyanskyy et al., 2006,
2015, 2016a, 2017), granites of the Voronezh Crystalline Massif (Savko
et al. 2014); LKO = complexes of the Lapland-Kola orogen, sutured
Kola and Karelia proto-cratons (Lahtinen and Huhma 2019);
SF = complexes of the Svecofennian domain (Kahkonen 2005);
VMRO = complexes of the Volyn-Middle-Russian orogen, sutured
Fennoscandia and Volgo-Sarmatia (Bogdanova et al. 2008); SN = com-
plexes of the Sveco-Norwegian domain (Bingen et al. 2008a; b);
Gren = complexes of the Sveconorwegian (Grenville) orogen, which
sutured Proto-Baltica, Proto-Laurentia and Amazonia in the process of

assembling Rodinia; R, V, S = plutons and rapakivi-like granites: Riga,
Vyborg and Salmi plutons (Bogdanova et al. 2008);
pU-TO = complexes of the Proto-Uralide-Timanide orogen, which
sutured Baltica and Arctida (Kuznetsov et al. 2009); VVP = complexes
of the Volyn volcanic province (Shumlyanskyy et al., 2016b);
cSTp = the basement of the Scythian-Turanian plate (Cadomides);
CGO = Greenland Caledonian orogen, which sutured Arctic Europe
and Laurentia. Western Urals: T = granitoids and metamorphites of the
Taratash complex; 1—alkaline basaltoids of the Navysh complex (Ai
Fm, Lower Riphean Burzyan Group, stratotypical location, Southern
Urals) 1752 ± 18 Ma (Krasnobaev et al. 2013a); 2—Saran
gabbro-ultrobasic intrusive complex (Middle and Northern Urals),
related to magma chambers of depleted mantle over a mantle plum,
*1750 Ma (Petrov, 2017); 3—Berdyaush intrusive massif 1395 ± 20,
1373 ± 21, 1372 ± 12, 1368.4 ± 6.2 and 1369 ± 13 Ma (Puchkov
2010) (G—gabbro, NS—nepheline syenites, GR—granites-rapakivi,
QS—quartz syeno-diorites); 4 and 5—granites of the Akhmerovo
massif 1413 ± 45 Ma (I-generation) and 1381 ± 23 Ma
(II-generation) (Krasnobaev et al., 2008); 6—intrusive rocks of the
Kusa-Kopan and Ryabinov complexes (marking the northern side of the
Zyuratkul fault), gabbro of the Kopan massif 1385 ± 25 Ma, granites
of Ryabinov 1386 ± 40 Ma and Guben 1330 ± 16, 1330 ± 27 Ma
massifs (Puchkov 2010); 7—bimodal volcanics of the Mashak Fm and
its age analogous—Shatak and Kuvash Fms * 1385 Ma (Puchkov,
2010); 8—volcanics of the Arsha Group –709.9 ± 7.3 Ma (Puchkov,
2010); 9—granitoids of the Barangulovo massif 725 ± 5 Ma (Puchkov
2010); 10—metamorphic rocks (including HP and UHP rocks) of the
Beloretsk block 600–550 Ma (Puchkov 2010); 11—rocks of the Mazara
magmatic areal: granites 681 ± 14, 667 ± 9.6 Ma and gabbroids
709 ± 10, 704.2 ± 8.3 Ma (Kuznetsov 2009); 12—pyroxenites of the
Kiryabin massif 680 ± 3.4 Ma (Krasnobaev et al. 2013b); 13—
trachybasalts and hyalonephelinites of Dvorets and granitoids of
Europa complexes 570 � 550 Ma (Petrov 2017); 14—weakly alkaline
rocks of the Kusa complex and basalts of basal levels of the Tanin Fm
625–600 Ma (Maslov et al. 2013; Petrov 2017); 15—trachyandesites of
the Shegra Fm, granosyenitic Troitsk and verlitic-gabbro-granodioritic
Zhuravlik complexes 680 � 670 Ma (Maslov et al. 2013; Petrov 2017);
16—tuffs layers of the Sylvitsa Group 563.5 ± 3.5 (Kuznetsov et al.
2017c)
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5 Conclusions

Integral characteristics of detrital zircons from Upper
Ordovician sandstones of the Uraltau Uplift studied in the
sample K12-006 show little similarities with U-Pb and
Lu-Hf model ages of rocks, from the basement of
Volga-Uralia (the southeastern part of the EEP) and with the
same characteristics of detrital zircons from the Late Pre-
cambrian strata of the Bashkir Uplift and Kazakhstan. In
contrast, the Mesoproterozoic detrital zircons from the
sample K12-006 are well consistent with U-Pb ages and Hf
isotope signatures of detrital zircons from the Mesopro-
terozoic–Early Neoproterozoic (Riphean) cover of the
Kokchetau Massif. However, studied detrital zircons also
revealed that they have alien relation to Volga-Uralia,
Kazakhstan and the Western Urals and thus must have
originated from other crustal blocks.

A very high similarity of the age spectra of dZr from
Ordovician sandstones of the Uraltau and Bashkir Uplifts
(samples K12-025 and K12-006, respectively; see Fig. 4a)
allows concluding that the amalgamation of the Precambrian
Bashkir and Uraltau basements occurred before Late
Ordovician. Detritus of post-Upper Ordovician sedimentary
complexes of the Bashkir and Uraltau Uplifts originated
from identical feeding provinces and was deposited in the
same basin, sealing its pre-Ordovician composite heteroge-
neous basement.
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