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“Kurchatov Institute” Center, Moscow, Russia, 6 Department of Chemistry, Lomonosov Moscow State University, Moscow,
Russia

Urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of
urokinase (uPA), which is involved in brain development, nerve regeneration, wound
healing and tissue remodeling. We have recently shown that Plaur, which encodes
uPAR, is an early response gene in murine brain. Assumingly, diverse functions of Plaur
might be attributed to hypothetical, unidentified microRNAs encoded within introns of
the Plaur gene. Using a bioinformatic approach we identified novel small RNAs within
the Plaur gene and named them Plaur-miR1-3p and Plaur-miR1-5p. We confirmed
Plaur-dependent expression of Plaur-miR1-3p and Plaur-miR1-5p in the mouse brain
and mouse neuroblastoma Neuro2a cells. Utilizing an in silico MR-microT algorithm in
DianaTools we selected two target genes – Mef2d and Emx2 with the highest binding
scores to small RNAs selected from identified Plaur-Pre-miR1. Furthermore, sequencing
of mouse brain samples for Plaur-miR1-5p target genes revealed two more genes—
Nrip3 and Snrnp200. The expression of Emx2, Mef2d, and Snrnp200 in the mouse brain
and Mef2d and Snrnp200 in Neuro2a cells correlated with expression of Plaur and small
RNAs—Plaur-miR1-3p and Plaur-miR1-5p. Finally, we demonstrated elevated MEF2D
protein expression in the mouse brain after Plaur induction and displayed activating
effects of Plaur-miR1-5p on Mef2d expression in Neuro2a cells using Luciferase reporter
assay. In conclusion, we have identified Plaur-miR1-3p and Plaur-miR1-5p as novel
small RNAs encoded in the Plaur gene. This finding expands the current understanding
of Plaur function in brain development and functioning.

Keywords: urokinase receptor, uPAR, Plaur, Plaur-miR1-5p, Mef2d, neuroblastoma, Plaur-miR1-3p, Neuro2A

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 xx 2022 | Volume 15 | Article 865858

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2022.865858
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2022.865858
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2022.865858&domain=pdf&date_stamp=2022-14-xx
https://www.frontiersin.org/articles/10.3389/fnmol.2022.865858/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-865858 May 28, 2022 Time: 21:54 # 2

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Rysenkova et al. Novel MicroRNA Encoded in Plaur Gene

INTRODUCTION

Urokinase receptor (uPAR, also known as CD87, U-PAR
and UPAR; encoded by the gene Plaur) is a multifaceted
protein with numerous physiological and pathological
effects. Since uPAR is anchored to the plasma membrane
via glycosylphosphatidylinositol (GPI)-moiety, it can move
laterally within the membrane leaflet, forming the uPAR
interactome. The final outcome and cellular effects of uPAR-
mediated interactions depend on the sum of signals coming from
the transmembrane partners and receptors engaged in uPAR
interactome (Eden et al., 2011). Urokinase (uPA) binding to
uPAR activates the uPA/uPAR complex at the leading edge of
migrating cell promoting their migration via extracellular matrix
remodeling. These changes contribute to various physiological
processes—morphogenesis, tissue regeneration and nerve fiber
growth (Parfenova et al., 2009; Tkachuk et al., 2009; Semina
et al., 2016; Klimovich et al., 2020; Yepes et al., 2021), as well
as to pathophysiological processes—fibrosis, tumor growth and
metastasis (Mahmood et al., 2018; Tkachuk et al., 2019).

uPAR overexpression stimulates radial neuronal migration to
the outer layers of differentiating cortex (Shmakova et al., 2021),
whereas uPAR knockout reduces migration of parvalbumin-
expressing GABA interneurons into cerebral cortex (Powell
et al., 2003). Recent papers have shown that mutations and
polymorphisms in the Plaur gene or uPAR ligand SRPX2
affect the formation of brain structures and induce severe
developmental pathologies in humans (speech deficiency, mental
weakness and autism spectrum disorders) (Bruneau and
Szepetowski, 2011). Using a model of acute generalized seizures
in mice, we revealed that Plaur operates as an immediate
early gene, and is rapidly induced by neuronal activity in
different brain regions independently of de novo protein synthesis
(Shmakova et al., 2020). This rapid and universal response
confirms an important role of uPAR in neuronal response to
excitation and/or damage.

We have previously demonstrated that CRISPR/Cas9-
mediated targeting of the Plaur gene inhibits Neuro2a
neuroblastoma cell proliferation, leading to downregulation
of full-length Ntrk3 messenger RNA (mRNA), which encodes
tropomyosin receptor kinase C (TrkC), a receptor that is involved
in p38/Akt signaling pathway (Rysenkova et al., 2018). However,
the reported effect of Plaur knockout on Ntrk3 mRNA expression
may not be merely attributed to uPAR-dependent interactome
function. It has been previously established that gene expression
and mRNA functioning can be regulated by so-called non-coding
RNAs that are not translated into a protein. Being a part of this
group, microRNAs (miRNAs) represent a highly conserved
fraction of short RNA (18–27 nt) endogenously produced in
many organisms. A complex secondary structure of miRNA
precursor (pri-miRNA) is subsequently processed into a more
mature form of pre-miRNA with a hairpin structure, which is
further transformed into a mature form located at the 5′ or 3′ end
of the loop (Broughton et al., 2016). According to the canonical
pathway, mature miRNAs complementarily interact with
their target transcripts in mammalian cells, leading to mRNA
degradation or translation inhibition (Broughton et al., 2016).

Originally identified in the cytoplasm, miRNAs have now been
found in all cellular compartments, where their functions are not
limited to target mRNA degradation. Indeed, there is evidence
indicating that miRNAs could either suppress or activate gene
expression by engaging with target gene promoters in the nucleus
(Broughton et al., 2016). Currently, over 2,600 human miRNAs
have been registered in the miRBase database,1 which correspond
to 2,500 mouse miRNAs owing to their high conservatism (Ørom
et al., 2008; Place et al., 2008). The miRBase database (see text
footnote 1 Release 22.1: October, 2018) comprises about 2,654
mature human miRNAs in contrast to only 1,978 mature mouse
miRNAs [GRCm38]).

The Plaur gene consists of seven exons and six introns. Prior
to our study, no miRNAs have been reported in the Plaur gene
sequence. The total Plaur gene size is 16,000 bp, while the
mature mRNA (merely exons) is composed of only 1,000 nt
(Kjaergaard et al., 2008), suggesting that non-coding RNAs,
including miRNAs, could be encoded in this gene. We conducted
a bioinformatic search and analyzed the miRNAs that are
encoded in the Plaur gene. We identified novel small RNAs and
named them Plaur-miR1-3p and Plaur-miR1-5p. Using wild-type
uPAR-expressing Neuro2a cells, CRISPR-edited uPAR-deficient
Neuro2a cells and in vivo model of endogenous induction
of Plaur expression in the brain, we confirmed the existence
of these new small RNAs, Plaur-miR1-3p and Plaur-miR1-5p.
In silico analysis of target genes allowed us to identify its possible
functions, namely determination of the cell fate and a crucial
role in neuronal apoptosis in the developing central nervous
system. We confirmed Plaur-dependent expression of Plaur-
miR1-3p and Plaur-miR1-5p in the mouse brain and mouse
neuroblastoma Neuro2a cells. Utilizing an in silico MR-microT
algorithm in DianaTools we selected two target genes—Emx2 and
Mef2d—with the highest binding score. Moreover, sequencing of
the mouse brain samples for Plaur-miR1-5p target genes revealed
two more targets—Nrip3 and Snrnp200. The expression of Emx2,
Mef2d and Snrnp200 in the mouse brain and Mef2d and Snrnp200
in Neuro2a cells correlated with expression of the Plaur gene and
small RNAs—Plaur-miR1-3p and Plaur-miR1-5p. Finally, in the
mouse brain we demonstrated an elevated expression of MEF2D
protein after Plaur induction and confirmed Plaur-miR1-5p-
mediated activation of Mef2d gene expression in Neuro2a cells.
In conclusion, we identified novel small RNAs - Plaur-miR1-
3p and Plaur-miR1-5p—encoded in the mouse Plaur gene. The
obtained results enable an increasingly deeper and more nuanced
understanding of Plaur gene function in brain development
and functioning.

MATERIALS AND METHODS

Bioinformatic Prediction of miRNA in
Plaur and Its Candidate Target Genes
To identify miRNA in the Plaur Mus musculus gene, we
employed the following bioinformatic tools. Promoter 2.02

1https://www.mirbase.org/
2https://services.healthtech.dtu.dk/service.php?Promoter-2

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 xx 2022 | Volume 15 | Article 865858

https://www.mirbase.org/
https://services.healthtech.dtu.dk/service.php?Promoter-2
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-865858 May 28, 2022 Time: 21:54 # 3

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Rysenkova et al. Novel MicroRNA Encoded in Plaur Gene

and ElemeNT3 computational tools were used to detect core
promoter elements upon screening RNA polymerase III (Pol
III) promoter regions (Sloutskin et al., 2015). Putative miRNA
precursors were identified by using the miRNA Fold web service4

(Supplementary Figure 1; Tav et al., 2016). We selected one
from the predicted stem-loop structures based on the stem-
loop length, the free energy of the stem-loop formation and
consensus motifs enhancing Drosha processing: a basal UG
motif, a flanking CNNC motif, a mismatched GHG motif
and an apical UGU/GUG motif (Lee and Shin, 2018). Stem-
loop structures were visualized by implementing Quickfold
(Supplementary Figure 2).5 In the selected stem-loops, Drosha
cleavage sites were predicted by using MatureBayes (Gkirtzou
et al., 2010) and putative mature miRNAs were identified
(Supplementary Figure 3).

To identify the putative targets and binding sites of predicted
miRNA, we employed a web-based target prediction algorithm,
namely MR-microT in DianaTools (Supplementary Figure 4A;
Reczko et al., 2012; Paraskevopoulou et al., 2013).6 The sequences
of predicted miRNAs were used as an input. The mouse genome
(Mus musculus, Ensembl v84) was used as a database for target
mRNA prediction (Supplementary Figure 4B). We selected
several predicted target mRNAs (Supplementary Tables 1, 2)
for further verification. To verify the identified targets, small
RNA sequencing using the Plaur-miR1 primer was performed.
The obtained sequences were mapped in the Mus musculus
genome using the BLAST algorithm. Genes that appeared both
in the BLAST search and MR-microT prediction were selected
for quantitative real-time polymerase chain reaction (qPCR)
verification. To assess the specificity of Plaur-miR1-5p and Plaur-
mir1-3p to the target gene promoter regions and introns, we took
NCBI gene sequences and aligned them against Plaur-miR1-5p
and Plaur-mir1-3p via the M-Coffee sequence alignment tool on
the T-COFFEE Multiple Sequence Alignment Server web service
(Supplementary Figure 4C).

Cell Culture
Mouse Neuro2a neuroblastoma cells (ATCC R© CCL-131TM

University Boulevard Manassas, VA, United States) not exceeding
20 passages were cultured in complete medium—Dulbecco’s
Modified Eagle’s Medium (DMEM) (#21969035), 10% fetal
bovine serum (FBS, Gibco, #10270-106, United Kingdom),
1 × Minimum Essential Medium (MEM) Non-Essential Amino
Acids Solution (#11140050) and 1 × antibiotic-antimycotic
solution (#15240062; all from Gibco, Life Technologies, Bleiswijk,
Netherlands)—at 37◦C in an atmosphere with 5% CO2. Cells
were plated at a concentration of 1 × 105 cells/ml. Neuro2a cells
with uPAR knockout were obtained by using the CRISPR/Cas9
(Neuro2a KO-Plaur cells) genome editing tool as described
previously (Rysenkova et al., 2018).

3http://lifefaculty.biu.ac.il/gershon-tamar/index.php/element-description
4https://evryrna.ibisc.univ-evry.fr/miRNAFold
5http://unafold.rna.albany.edu/?q=DINAMelt/Quickfold
6http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mrmicrot/
index

Animal and Tissue Samples
We had previously shown that Plaur gene expression is induced
in various brain structures (Shmakova et al., 2020) in a
model of pentylenetetrazole (PTZ)-induced seizures in mice.
Here we used miRNA and mRNA isolated from previously
obtained brain samples. A detailed description of methodology,
animal facility and enabling documentation has been previously
published (Shmakova et al., 2020). To assess the endogenous
level of Plaur-miR1 induction and expression of its target
genes, we selected brain regions with the most significant
Plaur mRNA induction 3 h after PTZ (Sigma-Aldrich, cat.
# P6500, Saint Louis, MO, United States) administration.
Thus, posterior cortex (Plaur induction was 8.7 times higher
than control) was enrolled to assess the level of Plaur-mir1-
5p and Plaur-mir1-3p and the striatum (Plaur induction was
16 times higher than control)—for the target gene analysis
(for further information, see Figure 2 in Shmakova et al.,
2020).

Construction of the
pBl-U6-Plaur-Pre-miR1 Vector for
Overexpression of Plaur-Pre-miR1 in
Neuro2a Cells
To clone Plaur-pre-miR1 (precursor of mature Plaur-miR1),
we used a vector for mouse Plaur-pre-miR1 expression
originally based on the pBl-U6-CMV-RFP (pBlueScriptII
vector from Agilent Santa Clara, CA, United States) plasmid
and encoding red fluorescent protein (RFP) for detection
(Supplementary Figure 5). Mouse Plaur-pre-miR1 was
amplified from Neuro2a genomic DNA using primers listed in
Supplementary Table 1. For amplification, we used Phusion
High-Fidelity PCR Master Mix (#F531L, Thermo Fisher
Scientific, Vilnius, Lithuania) according to the manufacturer’s
protocol. The program for template denaturation, primer
annealing and primer extension was 40 cycles of 94◦C for 15 s,
70◦C for 15 s and 72◦C for 25 s, respectively. The product length
was 280 base pairs (bp). The sequences were cloned into the
pBl-U6-CMV-RFP plasmid via BbsI (#R0539, New England
Biolabs, Ipswich, MA, United States) restriction sites. The
pBl-U6-Plaur-pre-miR1 plasmid sequence was verified using the
seq u6 primer 5′-CCTATTTCCCATGATTCCTTCATATTTGC-
3′ (Supplementary Figure 6; sequencing was performed by
Evrogen, Moscow, Russia).

The pBl-U6-Plaur-pre-miR1 vector was transfected in
Neuro2a cells with Lipofectamine 2000 according to the
manufacturer’s protocol. The Neuro2a cell transfection
efficiency was evaluated basing on the RFP fluorescence
analysis 24 h after transfection using Leica DMI 6000
B fluorescent microscope and LAS X software (Wetzlar,
Germany). Over a period of 48 h, Neuro2a-Plaur-pre-
miR1-transfected cells were lysed and a fraction of small
RNAs (mirVana miRNA Isolation Kit AM1560, Ambicon,
Carlsbad, CA, United States) and total RNA (Quick-
RNA MicroPrep R1051, Invitrogen, Freiburg, Germany)
was purified to assess the Plaur-miR1 and its target genes
expression level.
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Quantitative Real-Time Polymerase
Chain Reaction of Plaur-miR1-5p and
Plaur-miR1-3p
Short RNAs (< 200 nt small RNAs including pri-miRNAs,
pre-miRNAs and mature miRNAs) were isolated from wild
type Neuro2a cells, Plaur-deficient cells (Neuro2a KO-Plaur)
(Rysenkova et al., 2018), Neuro2a cells overexpressing Plaur-
pre-miR1 (three replicates per cell group), and from posterior
cortex samples (three animals per group) 0 and 3 h after
PTZ treatment according to the manufacturer’s protocol
(mirVana miRNA Isolation Kit AM1560, Ambicon, Carlsbad,
CA, United States). To generate complementary DNA (cDNA),
500 ng of small RNAs fraction and miScript II RT kit
(#218160, Qiagen, Hilden, Germany) was used. PCR was
carried out by using qPCR mix-HS SYBR (Evrogen) on
a CFX96 real-time PCR device (Bio-Rad, Hercules, CA,
United States). qPCR was employed to detect Plaur-miR1-5p
and Plaur-miR1-3p from Plaur-pre-miR1. Primers for Plaur-
miR1 were designed with NCBI Primer-blast7 and the IDT
Oligo Analyzer tool (eu.idtdna.com/pages/tools/oligoanalyzer).
For reverse primers, we used the commercially available
10 × miScript universal primer from the miScript SYBR R© Green
PCR Kit (#218073, Qiagen, Hilden, Germany). All primers
are listed in Supplementary Table 1. The thermal cycling
program for template denaturation, primer annealing and primer
extension was 40 cycles of 94◦C for 15 s, 57◦C for 15 s and 72◦C
for 20 s, respectively. The relative transcript level of Plaur-miR1-
5p was calculated using the 2−11Ct method with Snord95 as a
reference; normalization was carried out by taking the average
level of each transcript in the control as a unit. The PCR products
of Plaur-miR1-5p obtained from Neuro2a cells and posterior
cortex were cloned into 40 TA plasmids and subjected to Sanger
sequencing (performed by Evrogen).

Quantitative Real-Time Polymerase
Chain Reaction of Target Genes mRNA
for Plaur-miR1-5p and Plaur-miR1-3p
Total RNA was extracted from wild type Neuro2a cells,
Plaur-deficient cells (Neuro2a-KO uPAR) and Neuro2a cells
overexpressing Plaur-pre-miR1 (three replicates per each group)
(Supplementary Figure 7A) as well as from the striatum of
control mice (treated with saline) and mice 0.5, 1, 3, 6, 24, and
72 h after PTZ treatment (4–5 animals per group). The Quick-
RNA MicroPrep kit with TRIzol (#R1051, Invitrogen, Carlsbad,
CA, United States) was used according to the manufacturer’s
protocol. The isolated RNA was treated with RNase-free DNAase
I (Fermentas, Rockford, IL, United States) and then run on
an agarose gel for quality control (Supplementary Figure 7E).
To generate cDNA, 1µg of total RNA and the MMLV RT kit
(Evrogen) were used. PCR was carried out using qPCR mix-HS
SYBR (Evrogen) and the CFX96 Touch Real-Time PCR Detection
System (Bio-Rad). qPCR was used to detect the expression of
Plaur-miR1-5p target genes. Primers were designed using NCBI
Primer-blast (see text footnote 8) and the IDT Oligo Analyzer

7www.ncbi.nlm.nih.gov/tools/primer-blast/

tool.8 All primers are listed in Supplementary Table 1; the
Plaur mRNA primers are specific to exon 4. The thermal cycling
program for template denaturation, primer annealing and primer
extension was 40 cycles of 94◦C for 10 s, 60◦C for 30 s, and 72◦C
for 15 s, respectively. The relative transcript level of mRNA was
calculated using the 2−11Ct method with Actb (encodes β-actin)
as a reference. The reactions were performed in instrumental
triplicates; the results represent the mean of biological triplicates
(unless otherwise stated)± standard error of the mean (SEM).

Western Blot
Brain tissue samples was homogenized and lysed in an ice-
cold RIPA lysis buffer as previously described (Shmakova et al.,
2020). Proteins (45 µg) were resolved in 10% SDS-PAGE gels
and transferred to PVDF membrane (GE Healthcare) in the
transfer buffer (25 mM Tris, 192 mM glycine, 0.1% SDS and
20% methanol). Non-specific binding was blocked by 5% non-
fat dried milk in phosphate buffered saline (PBS, Sigma-Aldrich),
containing 0.1% Tween-20 at + 4◦C overnight. Proteins were
probed with the following primary antibodies in 1:1,000 dilution:
rabbit anti-SNRNP200 (Sigma, HPA029321), rabbit anti-MEF2D
(Cell signaling, 25621), rabbit anti-EMX2 (Abcam, ab94713),
rabbit anti-β-actin (Cell signaling, 4970S, control of protein load)
for 2h at room temperature. Membranes were washed with
PBS containing 0.1% Tween-20 and incubated with appropriate
peroxidase-conjugated secondary antibodies in 1:10,000 dilution
for 1.5h at room temperature, followed by washing in PBS
containing 0.1% Tween-20. Proteins were visualized using
SuperSignal West Dura Chemiluminescent Substrate (Thermo
Fisher Scientific) and ChemiDocTM XRS+ System (Bio-Rad) for
Western blotting imaging and analysis. Densitometric analysis of
blots at non-saturating exposures was performed using ImageJ.
Values of SNRNP200, MEF2D, and EMX2 protein expression
were normalized to β-actin. Original uncropped western blot
images are presented in Supplementary Figure 10.

Luciferase Reporter Assay
DNA fragments encoding the predicted binding sites for Plaur-
miR1-5p (3′UTR for Mef2d [positions 3376-3499 and 5140-
5276 in NM_001310587.1], Emx2 [positions 2191-2281 in
NM_010132.2] and CDS for Snrnp200 [positions 3037-3114
in NM_177214.5]) were amplified from murine cDNA (see
Supplementary Table 1 for primers) using Phusion High-Fidelity
PCR Master Mix (Thermo Fisher Scientific, # F531L) and inserted
in pGL3-promoter vector (Promega, #U47298). HindIII and NcoI
restriction sites were used for CDS sequences, while XbaI and
RigI restriction sites were used for 3′-UTR. The sequence of the
resulting vectors was confirmed using Sanger sequencing.

Neuro2a cells were seeded onto 96-well plate, cultured into
a monolayer, and co-transfected with PGL3 plasmids encoding
Mef2d 3′-UTR sequences, Emx2 3′-UTR sequence, Snrnp200
CDS sequence or empty pGL3 vector (control) with plasmid pBl-
U6-Plaur-pre-miR1 or pBl-U6 vector. 48 h after transfection cells
were analyzed using Luciferase Reporter Assay Kit (Promega,
Fitchburg, WI, United States). Luminescence was evaluated

8https://eu.idtdna.com/pages/tools/oligoanalyzer/
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using VictorTM X3 Multilabel Plate Reader (Perkin-Elmer Inc.,
United States), the luciferase signal was calculated in Relative
luciferase activity units. Data were normalized by luciferase signal
in Neuro2a cells co-transfected with empty pGL3 vector and
pBl-U6-Plaur-pre-miR1 vector.

Statistical Analysis
We analyzed qPCR data with GraphPad Prism 8.01 (GraphPad
Software Inc., San Diego, CA). For cells we analyzed qPCR data
using an unpaired t-test, treating the wild type and experimental
cells as two independent groups. For comparisons with more than
two groups, we used analysis of variance (ANOVA) followed by
Dunnett’s multiple comparisons test. Relative luciferase activity
data were compared using two-way ANOVA followed by Šídák’s
multiple comparisons test. The data are presented as the
mean± SEM. The level of significance was set at P < 0.05.

RESULTS

Computational Prediction of a Novel
miRNA in the Mus musculus Plaur Gene
and Its Target Genes
We first hypothesized that small RNAs are encoded within
Plaur as individual genes under specific Pol III promoters.
Bioinformatic screening of Plaur employing ElemeNT
(Sloutskin et al., 2015) and Promoter 2.0 failed to reveal
any specific binding sites for Pol III. Hence, no predicted
transcription start sites (TSS) for miRNA genes within Plaur that
could give rise to miRNAs via the classical biogenesis pathway
were identified. Since there is considerable evidence indicating
that miRNAs can be located in the introns of protein-coding
genes—called mirtrons (Dokanehiifard et al., 2015, 2017)—we
next tested the hypothesis that Plaur can contain such structures.
The sequences of predicted miRNAs are summarized in Table 1.

We employed the miRNA Fold9 web-based prediction service
to reveal miRNA precursors in Plaur (GRCm39, Gene ID:
18793). miRNA Fold predicted 256 stem-loop structures, which
are potential miRNA precursors, located within Plaur. We
filtered the most stable predicted stem-loops with free energy
of formation ≤ −15 kJ/mol (Xue et al., 2005). Such structures
occur infrequently, although they are frequently non-random
because evolution should theoretically reject them. Among that
putative pre-miRNA, three ones had a high probability to exist
in vivo based on motifs enhancing Drosha processing: Plaur-pre-
miR1 (located in intron 3), Plaur-pre-miR2 (located in intron
3) and Plaur-pre-miR3 (located in intron 6) (Figure 1 and
Table 1).

We focussed on Plaur-pre-miR1 since it contains three motifs
that enhance Drosha processing (Lee and Shin, 2018), namely
the 5′ GUG motif on the apical loop, an unpaired GHG in the
downstream part of the stem and a UG motif in the base of the
stem-loop structure. It is located upstream of exon 4 (Figure 2A),
with free energy of formation −47.6 kJ/mol, indicating its high

9https://evryrna.ibisc.univ-evry.fr/miRNAFold

stability. Due to the presence of these consensus sequences critical
for Drosha processing activity, we anticipated a high probability
of Plaur-pre-miR1 being a substrate for Drosha processing
(Figure 2B).

Hence, we conducted in silico Drosha cleavage of Plaur-
pre-miR1 to locate the miRNA precursor within its sequence.
We predicted Drosha cleavage sites as well as mature miRNA
sequences using MatureBayes. According to the processing
rules of the Drosha enzyme, the mature miRNA sequences
located at the hairpin 5′ end (5p miRNAs) and predicted
in silico corresponded to those predicted by the MatureBayes
program (Supplementary Figure 3). However, the sequences
located at the 3′ end (3p miRNAs) were mis-predicted by
the MatureBayes program since they were located at the
apical loop region therefore contradicting the Drosha-mediated
processing mechanisms. Hence, we predicted 3p miRNA
sequences following the Drosha processing rules: to protrude two
nucleotides at the 3′ end of each mature miRNA (Figure 2C).

To verify Plaur-miR1-5p and Plaur-miR1-3p sequences
predicted by MatureBayes and to confirm our predictions based
on the Drosha processing pattern, we performed multiple
sequence alignment of the Plaur region corresponding to
Plaur-pre-miR1 in different vertebrate species: Bos taurus,
Mus musculus, Canis lupus familiaris, Homo sapiens, Pogona
vitticeps, and Poecilia latipinna (Figure 2D). Similar alignment
results for Plaur-miR2 and Plaur-miR3 are presented in
Supplementary Figure 8. The region corresponding to
Plaur-miR1-5p showed maximum occupancy in possible miRNA
seed sequence regions; together with a high consensus percentage
(50–90%) the Plaur-miR1-5p sequence appeared to be conserved
among all analyzed vertebrate species. There was also a TG
sequence complementary to UG in RNA among all species in
a highly homologous region with respect to the hairpin base.
This is consistent with the literature on consensus sequences
contributing to the Drosha/DGCR8 microprocessor complex
function, located approximately 13 nt downstream the Drosha 5p
cleavage site (Auyeung et al., 2013). In contrast, low occupancy
and consensus ≤ 50% indicate that the Plaur-miR1-3p sequence
was not conserved. Thereby, we assumed that Plaur-miR1-3p
is a passenger strand and Plaur-miR1-5p is a novel guide
strand. Although Plaur-miR1-5p showed similarity to mmu-
miR-7672-3p in miRDataBase encoded within the gene PDE12
(Chr14:26390702-26390763 bp, GRCm39,—strand, according to
Blast alignment), an identical miRNA for Plaur-miR1 has not
yet been reported in miRbase. Overall, the high Plaur-miR1-5p
sequence homology among the analyzed organisms suggests
that it has been a subject to natural selection due a potentially
important biological function. Assumingly, the 5p mature
form performs a guiding function, while the 3p form degrades.
In this regard, we have focused primarily on Plaur-miR1-5p
and its targets.

Next, using the DianaTools (v84) web server, we performed
computational prediction of Plaur-miR1-5p and Plaur-miR1-
3p target genes. The following mature miRNA sequences
were entered into the search bar: Plaur-miR1-5p 5′-
UGGUGAUUGGCUGCCAGGUUC-3′ and Plaur-miR1-3p
5′-AGAACCUGGCCGCCAACA-3′. The search results are
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TABLE 1 | Selected precursor miRNAs encoded in the Mus musculus Plaur gene.

Name Sequence (5′→3′) Length Genome position

Plaur-pre-miR1 GGACUUGGGAUAAGUAGGCUUGGUGAUUGGCUGCCAGGUUCAGAGUGGAGUUCUCUGCAGGACCU
GGCCGCCAACACGCCACUCUCUCCUCUUCCUAGGAGCC

103 24,171,226–2,417,132

Plaur-pre-miR2 GUAGGUGGAUCUCUGGGUUUGAGGACAGCCUGGUCCAUACAGAGAGGCCCUGUCUGGGGGGUGGG
GAGGAGGCGGUGUCUACCUGC

86 24,173,938–24,174,023

Plaur-pre-miR3 AAGAGGGGUGGGACAGACAGCGUGGCUGUGCUGGAAAUUCCUGUUUUGAUUUUUUUUCCCCCAAG
ACAGGGUUUCUCUGUAUAGCCCCUGGCUGUCCUGGAACUCACUU

109 24,169,492–24,169,600

FIGURE 1 | Computational prediction of novel small RNAs in the Mus musculus Plaur gene. We applied the miRNA Fold software to predict miRNA precursor hairpin
structures located in Plaur. We then used the Quickfold service for subsequent visualization and analysis of 256 predicted stem-loops. We identified three stem-loop
structures with high probability to be miRNAs according to the intronic localization, overall stability (≤ −15 kJ/mol) and consensus motifs that are critical for Drosha
processing. Plaur-pre-miR1 and Plaur-pre-miR3 are located in intron 3 and Plaur-pre-miR2 is located in intron 6. Introns are highlighted in blue; exons are highlighted
in red.

presented in Supplementary Table 2 for Plaur-miR1-5p and
Supplementary Table 3 for Plaur-miR1-3p, as well as in primary
screenshots of the web portal (Supplementary Figure 4B). Since
miRNAs engage with various targets, 800 Plaur-miR1 targets

were obtained, among which 50 targets had a binding score > 0.9
(set as the screening threshold).

We have previously shown that uPAR plays a role in
neuronal cell differentiation and survival (Rysenkova et al.,

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 xx 2022 | Volume 15 | Article 865858

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-865858 May 28, 2022 Time: 21:54 # 7

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Rysenkova et al. Novel MicroRNA Encoded in Plaur Gene

FIGURE 2 | Identification of novel small RNAs Plaur-miR1: Plaur-miR1-3p and Plaur-miR1-5p in the Mus musculus Plaur gene. (A) Schematic overview of mouse
Plaur gene, adapted from NCBI Genome browser. Untranslated regions are shown in gray. Exons and introns are indicated as blue rectangles and lines, respectively.
(B) The predicted stem-loop structure of Plaur-miR1 from Plaur intron 3. Arrows indicate predicted sites of Drosha cleavage; mature miRNAs from the stem-loop,
namely Plaur-miR1-5p and Plaur-miR1-3p, are highlighted in orange and yellow, respectively. (C) The duplex part of the stem-loop is indicated; sequences of mature
Plaur-miR1-5p and Plaur-miR1-3p predicted by MatureBayes are shown in bold (predicted Drosha cutting). (D) The intronic region corresponding to the novel miRNA
in the Plaur gene is highly conserved among vertebrates. Multiple sequence alignment with Clustal Omega (visualization Jalview 2.11.0) revealed consensus regions
matched to mature Plaur-miR1-5p. Areas corresponding to the sequences of mature miRNAs are circled in frames; vertebrate species are indicated on the right. The
consensus diagram shows the occurrence of one nucleotide in a given position; the occupancy diagram shows the number of nucleotides in a given position.

2020). Moreover, we have found a correlation between high
expression of uPAR and induction of neuronal migration to
the outer layers of cerebral cortex, as well as Plaur function
as an early response gene in the brain, a characteristic that
possibly determines uPAR as a morphogen (Shmakova et al.,
2021). Hence, we analyzed the possible targets obtained by
DianaTools to study in further detail the role of Plaur-miR1-5p
and Plaur-miR1-3p with a special focus on targets potentially
involved in neuronal differentiation or surveillance, as well as
the maturation of brain structures. Emx2 (empty helix homeobox
2) was the target for Plaur-miR1-5p with the highest score
(0.998). Emx2 is a transcription factor that plays a pivotal
role in the developing brain, determining cell fate in the
embryonic central nervous system (Gulisano et al., 1996). For
Plaur-miR1-3p, Mef2d (myocyte enhancement factor 2D) was
a target with a highest score (0.989). Mef2d is a transcription
activator that plays a key role in the regulation of neuronal
apoptosis (Wang et al., 2009; Assali et al., 2019). Moreover, Mef2d
also was a target for Plaur-miR1-5p with a score (0.485) as
detected by DianaTools (Supplementary Figure 4C). Therefore,
we analyzed Emx2 and Mef2d mRNA expression in Neuro2a
control cells, Neuro2a KO-Plaur and Neuro2a-Plaur-miR1 cells
(ectopic Plaur-miR1 expression) to assess the impact of Plaur-
miR1-5p and Plaur-miR1-3p on their targets. Moreover, Plaur-
miR1-5p and Plaur-miR1-3p have a recognition site in the
Emx2 and Mef2d gene promoters (Figure 3A) and introns

(Figure 3B and Supplementary Figure 4C), suggesting that
Plaur-miR1 regulates the expression of these target genes at the
nuclear level, including their expression induction. To examine
the Plaur-miR1-5p specificity to the promoter region [600 nt
upstream of the TSS, according to Ensembl genome browser]10

and target gene introns, we used intronic sequences from NCBI
and aligned them with Plaur-miR1-5p and Plaur-miR1-3p via the
M-Coffee tool of the T-COFFEE Multiple Sequence Alignment
Server web service.

Detection of Plaur-miR1-5p and
Plaur-miR1-3p in Mouse Neuro2a Cells
and Mouse Brain
The obtained bioinformatic data on the existence of murine
Plaur-miR1-5p and Plaur-miR1-3p was verified in Neuro2a cells
and posterior cortex of C57BL/6J mice. Since the studied miRNAs
are located in Plaur introns we used previously obtained Neuro2a
cells with CRISPR/Cas9n-mediated Plaur knockout (Neuro2a
KO-Plaur) (Rysenkova et al., 2018; Semina et al., 2020) as a
negative control and wild type Neuro2a cells (Neuro2a WT)
endogenously expressing Plaur for measuring the miRNA levels
in Neuro2a cells.

Plaur-miR1-5p and Plaur-miR1-3p were detected in Neuro2a
WT cells but not in Neuro2a KO-Plaur cells (Figure 4A). These

10https://www.ensembl.org
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findings suggest that these miRNAs are expressed in Neuro2a
cells and their expression level is Plaur dependent. Moreover,
transfection of Neuro2a cells with the pB1-miR plasmid to
overexpress Plaur-miR1-5p and Plaur-miR1-3p increased the
content of these miRNAs in Neuro2a cells (Neuro2a WT Plaur-
miR1 cell in Figure 4A) and restored their expression in
Neuro2a KO-Plaur cells (Neuro2a KO WT Plaur-miR1 cell in
Figure 4A). Plaur mRNA expression was verified by qPCR
(Figure 4B). The specificity of the observed effects (Figure 4A)
was further confirmed by the lack of change in uPAR expression
level in Neuro2a cells transfected with the pB1-miR plasmid
for Plaur-miR1-5p and Plaur-miR1-3p overexpression (Neuro2a
WT Plaur-miR1 and Neuro2a KO uPAR Plaur-miR1 cells in
Figure 4B).

Subsequently, we analyzed the Plaur-miR1-5p and Plaur-
miR1-3p expression in the mouse brain (posterior cortex) in
control conditions and 3 h after PTZ-induced Plaur expression
(Shmakova et al., 2020). Surprisingly, we revealed not only
Plaur-miR1-5p and Plaur-miR1-3p expression in the posterior
cortex, but their expression was increased by 1.9 and 2.6 times,
respectively, after PTZ treatment (Figure 4C).

qPCR using a small RNA matrix (< 200 nt) with primers for
Plaur-miR1-5p yielded a single product with an approximate size
of 50 nt (Supplementary Figure 9). To confirm the specificity
of qPCR performed with Plaur-miR1-5p primers and to establish
the nucleotide sequence of all PCR products in this reaction, we
sequenced the qPCR product with the Plaur-miR1-5p primers
using miRNA samples from posterior cerebral cortex. Sequencing
of PCR products and their cloning into TA vector was carried
out by Evrogen. The results of 19 vector clones of TA containing
Plaur-miR1-5p sequences are shown in Figure 4D. Clones 1, 9,
11, and 16 demonstrate the sequence similarity in 15 out of 22
nucleotides to Plaur-miR1 (Figure 4E) and are 22–24 nt in length.
All other sequences range in size from 31 to 134 nt suggesting
that they may be related to other RNA fragments in small RNA
fraction (< 200 nt).

The sequencing results revealed that only 20% (4 out of 19
clones) were the target products of Plaur-miR1-5p. Actually, an
accurate detection of the relative Plaur-miR1-5p expression in
posterior cortex may not be feasible at this stage and may be
masked due to the presence of by-products. One of the possible

FIGURE 3 | (Continued)
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FIGURE 3 | Alignment of Plaur-miR1-5p (A) and Plaur-miR1-3p (B) with promoter regions and introns of the predicted target genes Mef2d, Emx2, Snrnp200, and
Nrip3 with the M-coffee web service T-COFFEE Multiple Sequence Alignment Server.

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 xx 2022 | Volume 15 | Article 865858

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-865858 May 28, 2022 Time: 21:54 # 10

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Rysenkova et al. Novel MicroRNA Encoded in Plaur Gene

reasons would be different levels of the Plaur and Plaur-miR1-
5p induction (8.8-folds for Plaur, refer to Figure 2 in Shmakova
et al. (2020); 2.9-folds for Plaur-miR1-5p (Figure 4C) in posterior
cortex. Beyond that, the induction difference could stem from
rapid degradation of Plaur-miR1-5p in the cytoplasm due to
interaction with its targets (Agrawal et al., 2003).

Nevertheless, the qPCR product sequencing results allowed
us to determine the possible targets for Plaur-miR1-5p using
experimental approach. For that, we aligned the obtained
sequencing products > 31 nt in length against Mus musculus
genome GRCm39 using the BLAST algorithm. Two genes
appeared in the BLAST search: Snrnp200 (U5 small nuclear
ribonucleoprotein) and Nrip3 (nuclear receptor interacting
protein 3). We then analyzed the mRNA expression levels of these

genes by qPCR. Of note, both Snrnp200 and Nrip3 had rather low
score values according to the prediction of targets in DianaTools:
0.48 and 0.38, respectively.

Evaluation of the Level of Predicted
Target Genes of Plaur-miR1-3p and
Plaur-miR1-5p
The established Plaur-dependent expression of Plaur-miR1-
3p and Plaur-miR1-5p in the mouse brain prompted us to
evaluate the expression of Plaur-miR1-3p and Plaur-miR1-5p
target genes—Emx2 and Mef2d identified via DianaTools—as
well as Snrnp200 and Nrip3, identified in qPCR products from
posterior cortex samples. The target gene expression was assessed
in the striatum, which, as we have previously reported, exhibited

FIGURE 4 | (Continued)
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FIGURE 4 | Analysis of Plaur-miR1-3p and Plaur-miR1-5p expression in Neuro2a cells and mouse posterior cortex. (A) qPCR of Plaur-miR1-3p and Plaur-miR1-5p
expression in Neuro2a cells. The data are expressed as mean ± SEM (n = 3), normalized to Snord95 expression as a reference gene. (B) qPCR of Plaur expression
in Neuro2a cells. The data are expressed as mean ± SEM (n = 3), normalized to Actb (encodes β-actin) expression as a reference gene. For (A,B), the columns are:
Neuro2a WT—control Neuro2a cells; Neuro2a-KO-uPAR—uPAR-deficient Neuro2a cells; Neuro2a Plaur-miR1—Neuro2a cells with ectopic Plaur-pre-miR1
expression; Neuro2a-KO-uPAR Plaur-miR1—uPAR-deficient Neuro2a cells with ectopic Plaur-pre-miR1 expression. The data were analyzed by using analysis of
variance followed by Dunnett’s multiple comparisons test using GraphPad Prism software. (C) qPCR of Plaur-miR1-5p and Plaur-miR1-3p in the posterior cortex 0
and 3 h after endogenous Plaur induction. The data are expressed as mean ± SEM (n = 4). The data were analyzed by using a one-sample t-test with GraphPad
Prism software. Statistical significance in (A–C) is indicated by bars and asterisks as follows: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. (D) Sequence results of 19 TA
vector clones containing Plaur-miR1-5p sequences generated in (C). Four of 19 (20%) clones were 22–24 bp in length and could correspond to mature miRNA. In
addition, 8 of 19 (40%) clones were 22–31 bp in length and could correspond to other RNA fragments isolated from posterior cortex small RNA fraction
(Supplementary Figure 7D). (E) Clones 1, 9, 11, and 16 show the Plaur-miR1-5p sequence, demonstrated as alignment with Plaur-pre-miR1. The asterisks in
(D,E) indicate that the aligned sequences match at that position.

the highest increase in Plaur expression after PTZ treatment:
16 times compared with the control group, as presented in
Figure 3 in the paper by Shmakova et al. (2020). Mouse striatum
samples were enrolled for analysis at the baseline and 0.5,
1, 3, 6, 24, and 72 h after PTZ administration. We found a
significantly increased expression of Mef2d, Emx2, and Snrnp200
mRNA (Figures 5A–C). Moreover, the induction dynamics
was consistent with the Plaur expression dynamics after PTZ
treatment, as shown in Figure 2 by Shmakova and co-authors
(Shmakova et al., 2020). Meanwhile, the Mef2d and Snrnp200
expression remained elevated by more than 2-folds 72 h after
PTZ treatment. Emx2 expression was elevated up to for 6 h
after PTZ treatment, with a maximum increase of 2.97-folds
after 3 h as compared with endogenous Plaur expression.

Nrip3 expression remained unchanged at all the tested time
points (Figure 5D).

We also confirmed an increased expression of MEF2D protein
in the mouse brain: MEF2D expression peaked 6h after PTZ
administration (Figure 6A). The level of SNRNP200 and EMX2
proteins remained unchanged 3 and 6 h after PTZ administration
(Figures 6B,C) suggesting that these genes may be subject to
a different transcriptional and translational regulation, which
requires further investigation.

To further expolore the relationship between the expression
of Plaur-miR1 and its target genes, we analyzed Nrip3, Snrnp200,
Emx2, and Mef2d mRNA expression in relation to Plaur and
Plaur-pre-miR1 expression in Neuro2a cells using qPCR. Plaur
knockout markedly reduced Mef2d and Snrnp200 expression
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FIGURE 5 | mRNA expression of the Plaur-miR1-3p and Plaur-miR1-5p target genes Mef2d, Snrnp200, Emx2, and Nrip3 in mouse striatum. qPCR analysis of
(A) Mef2d, (B) Snrnp200, (C) Emx2 and (D) Nrip3 expression in the striatum of control mice (treated with saline, 0 h) and mice 0.5, 1, 3, 6, 24, and 72 h after
endogenous Plaur induction. The data are presented as mean ± SEM (n = 4), normalized to Actb (encodes β-actin) expression as a reference gene. The data were
analyzed by using analysis of variance followed by Dunnett’s multiple comparisons test with GraphPad Prism software. Statistical significance is indicated by bars
and asterisks as follows: *p < 0.05; **p < 0.01; ***p < 0.001.

compared with Neuro2a WT cells: 50-folds for Mef2d and
16.4-folds for Snrnp200 (Neuro2a KO cells in Figure 7). Emx2
and Nrip3 expression in the Neuro2a cell was below the detection
level. Neuro2a control cells transfected with the pBl-U6-Plaur-
pre-miR1 plasmid to overexpress Plaur-miR1-3p and Plaur-
miR1-5p showed significantly increased Mef2d expression but
not Snrnp200 (Neuro2a WT Plaur-miR1 cells in Figure 7).
Moreover, the Plaur-miR1-3p and Plaur-miR1-5p expression
restored Mef2d and Snrnp200 expression (in Neuro2a KO uPAR
Plaur-miR1 cells in Figure 7), indicating that the expression of
the Plaur-miR1-3p and Plaur-miR1-5p targets in Neuro2a cells is
strongly dependent on the expression of Plaur and Plaur-miR1-
3p and Plaur-miR1-5p transcribed from the Plaur gene. Thus,
we have identified two small RNAs, Plaur-miR1-3p and Plaur-
miR1-5p, encoded in intron 3 of the Plaur gene, as well as the

Plaur-miR1-3p and Plaur-miR1-5p target genes—Emx2, Mef2d,
and Snrnp200.

Direct Interaction of Putative
Plaur-miR1-5p With Mef2d, Emx 3′-UTR
and CDS of Snrp200
Since the sequencing of PCR products in cerebral cortex of
murine brain (posterior cortex) with primers for Plaur-miR1-5p
revealed Plaur-miR1-5p expression, we next addressed if there is
a direct interaction between Plaur-miR1-5p and its target genes
Mef2d, Snrnp200 and Emx2. Using DianaTools (v84) web server
we predicted microRNA response elements (MRE) for the Mef2d
and Emx2 genes in their 3′-UTRs and for the Snrnp200 gene in its
CDS sequence (Supplementary Figure 11). We cloned 3′-UTR
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FIGURE 6 | Protein expression of Plaur-miR1 (Plaur-miR1-3p and Plaur-miR1-5p) target genes Mef2d, Snrnp200, and Emx2 in mouse striatum. Western blot
analysis of (A) MEF2D, (B) SNRNP200 and (C) EMX2 expression in striatum of control mice (treated with saline, 0 h) and of mice after 3 and 6 h induction of
endogenous Plaur expression. Densitometric analyses and values of protein expression normalized to β-actin are presented as mean ± SEM (n = 3–6). The vertical
line in (A) indicates where the WB lanes were cut and the lanes of the same immunoblot were placed together to allow for a direct comparison. The data were
analyzed using analysis of variance followed by Dunnett’s multiple comparisons test with GraphPad Prism software. Statistical significance is indicated by bars and
asterisks as follows: ∗∗p < 0.01.

for Emx2, Mef2d and CDS for Snrnp200 into a pGL3-reporter
vector downstream of Renilla luciferase ORF and co-transfected
Neuro2A cells with these constructs and pBL-Plaur-pre-miR1
plasmid; pBl-control vector was used as a control (Figure 8).
We found that co-transfection of PGL3 vector containing Mef2d
3′-UTR sequence (positions 3376-3499 in NM_001310587.1)
with pBL-Plaur-pre-miR1 resulted in a significant ∼1.4-fold
increase in luciferase activity (Figure 8, p = 0.0178) compared to
co-transfection with pBl-control vector. Co-expression of pBL-
Plaur-pre-miR1 plasmid with pGL3-reporter vectors containing
3′-UTR sequence of Mef2d outside the mentioned region
(positions 5140-5276 in NM_001310587.1), 3′-UTR sequence of
Emx2 (positions 2191-2281 in NM_010132.2) or CDS sequence
of Snrnp200 (positions 3037-3114 in NM_177214.5) revealed
no significant change in luciferase activity compared with pBl-
control vector (Figure 8). These results confirmed that Plaur-
miR1-5p can specifically increase the Mef2d expression through
its 3′-UTR site.

DISCUSSION

uPAR is a multifunctional, GPI-anchored protein that regulates
important processes such as gene expression, cell proliferation,

adhesion, migration, invasion and development. Since uPAR
lacks membrane and intracellular domains but is anchored
to the outer plasma membrane leaflet, it is capable of lateral
interactions with other receptors modulating their intracellular
signaling pathways. More than 30 signaling proteins have been
shown to interact directly with uPAR as lateral partners (Eden
et al., 2011). The fact that uPAR interacts with G protein-
coupled receptors, receptor tyrosine kinases and integrins
implies that the actual number of components constituting
the uPAR interactome is exceptionally high. Previous studies
revealed cognitive disorders and defects in the development of
GABAergic interneurons in uPAR null mice (Powell et al., 2003).
uPAR overexpression markedly stimulated the radial neuronal
migration to the outer layers of differentiating cortex (Shmakova
et al., 2021), which implies uPAR participation in neocortex
embryonic development.

Emerging evidence indicates that uPAR is involved in various
physiological and pathological conditions in the nervous system,
but the known molecular mechanisms of uPAR action do not
explain the phenomena. For example, polymorphisms of Plaur
and the uPAR ligand sushi repeat containing protein X-linked
2 (encoded by the SRPX2 gene) correlate with human diseases
such as epilepsy, autism, multiple sclerosis, Alzheimer’s disease
and brain tumors. In addition, we have recently demonstrated
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FIGURE 7 | Plaur-miR1 (Plaur-miR1-3p and Plaur-miR1-5p) expression
altered the expression of the predicted target genes Mef2d and Snrnp200 in
Neuro2a cells. qPCR analysis of (A) Mef2d and (B) Snrnp200 in Neuro2a WT,
Neuro2a KO uPAR, Neuro2a WT, and Neuro2a KO uPAR cells after
pBl-U6-Plaur-pre-miR1 expression. The data presented as mean ± SEM
(n = 3), normalized to Actb (encodes β-actin) expression as a reference gene.
The data were analyzed by using analysis of variance followed by Dunnett’s
multiple comparisons test with GraphPad Prism software. Statistical
significance is indicated by bars and asterisks as follows: ∗∗p < 0.01;
∗∗∗p < 0.001.

FIGURE 8 | Results of the luciferase reporter assay for the confirmation of
specificity of Plaur-miR1-5p effect on its predicted targets. Neuro2a cells were
co-transfected with pBl-U6-Plaur-pre-miR1 and pGL3 vector coding 3-UTR or
CDS sequences. Empty vectors pBl-U6 and pGL3 were used as controls.
Data were normalized by luciferase activity in Neuro2a cells co-transfected
with pBl-U6-Plaur-pre-miR1 and pGL3 vectors. The data are presented as
mean ± SEM (n = 3) and compared using two-way ANOVA followed by
Šídák’s multiple comparisons test with GraphPad Prism software. Statistical
significance is indicated by bars and asterisks as follows: *p < 0.05.

that Plaur is an early response gene in the mouse brain,
which is activated upon PTZ treatment (Shmakova et al., 2020).
These data change the conceptual landscape model of uPAR

protein and Plaur gene functions and expand our knowledge
on their role in health and disease. uPAR unexpectedly became
a meaningful receptor in the central nervous system, which
has opened new perspectives for understanding the embryonic
development, normal functioning and pathological changes in
the central nervous system. Recent studies have unveiled the
myriad roles of miRNAs, highlighting the biological significance
of these previously “overlooked” RNA species. In this regard, we
hypothesized that previously unknown miRNAs located in the
Plaur intronic sequences may determine numerous effects that
cannot be otherwise explained by the function of uPAR protein.
Indirect evidence supporting this hypothesis resides in the fact
that Plaur knockout decreases the Ntrk3 mRNA expression
(encodes TrkC) in mouse Neuro2a cells (Rysenkova et al., 2018).

We conducted a Drosha processing bioinformatic search
and found hairpins previously unidentified in the Plaur gene
structure. We named these pre-miRs Plaur-pre-miR1 (located
in intron 3), Plaur-pre-miR2 (located in intron 3) and Plaur-
pre-miR3 (located in intron 6) (Figure 1 and Table 1). We
focussed on the first hairpin, Plaur-pre-miR1 and proved that
the mature miRNAs Plaur-miR1-3p and Plaur-miR1-5p are
expressed in Neuro2a cells and mouse brain. Further, we enrolled
cells with complete Plaur knockout—which we had described
previously (Rysenkova et al., 2018)—as well as the brain samples
with endogenous Plaur induction (Shmakova et al., 2020),
obtained as a result of PTZ treatment. The maximal Plaur
induction was detected in these brain samples by 3 h after PTZ
treatment. Here, we demonstrate that Plaur-miR1-3p and Plaur-
miR1-5p expression is subjected to Plaur expression regulation:
Plaur-miR1-3p and Plaur-miR1-5p expression is downregulated
upon Plaur knockout, while Plaur overexpression results in
elevated Plaur-miR1-3p and Plaur-miR1-5p expression. Figure 4
demonstrates that Plaur-miR1-5p expression was up to 1.6-
folds higher than the expression of Plaur-miR1-3p, assumingly
reflecting increased stability of Plaur-miR1-5p in Neuro2a cells
(Figures 4A,B).

We used two approaches to identify potential Plaur-miR1
target genes. Based on the collected data, we selected two
targets via DianaTools. For Plaur-miR1-5p, we enrolled Emx2,
a transcription factor that plays an important role in the
embryonic brain, to specify cell fates in the developing central
nervous system (Bishop et al., 2002; Supplementary Table 2).
For Plaur-miR1-3p, we selected Mef2d, a transcriptional
activator that plays a critical role in neuronal apoptosis
(Supplementary Table 3; Wang et al., 2009). In addition to the
DianaTools predictive algorithm, we used an original approach
for experimental tissue-specific detection of potential Plaur-
miR1 target genes by analyzing the sequences obtained from
sequencing PCR products of brain samples with primers for
Plaur-miR1-5p (Figures 4C,D). We believe that this approach
is more reliable than DianaTools. DianaTools is based on
the algorithm, which allows target prediction with the highest
score. However, this tool has disadvantages, specifically the lack
of extensive experimentally validated miRNA–gene interaction
datasets, forcing most available implementations to rely solely
on in silico predicted interactions (Vlachos et al., 2015). As
previously mentioned, even the most advanced miRNA target
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prediction algorithms exhibit high false-positive rates (Vlachos
and Hatzigeorgiou, 2013). Our study is in agreement with
this previously published data: among Plaur-miR1-5p targets
found with the sequence assistant Snrnp200 (U5 small nuclear
ribonucleoprotein) and Nrip3 (nuclear receptor interacting
protein 3) had low scores (0.48 and 0.38, respectively), suggesting
these targets would be dismissed when using DianaTools alone.
Surprisingly, the expression dynamics analysis of the Plaur-
miR1 targets in the mouse brain (striatum) after Plaur induction
revealed a direct correlation between an increase in Plaur
expression and elevated Mef2d, Emx2, and Snrnp200 gene
expression (Figures 5A–C). The elevated MEF2D expression was
verified at the protein level (Figure 6A). Nrip3 mRNA expression
was not significantly changed (Figure 5D).

Therefore, continuing to elaborate on the hypothesis that in
addition to the classical mechanism of miRNA action relying on
the suppression of target genes and occurring when a miRNA
binds to the 3′-untranslated region of the target gene, there
exist an activating miRNA function implemented via miRNA
interaction with 3′-UTR. Evidence supporting this concept has
been published by Chu and co-authors in NAR (Chu et al., 2020).
In addition, the underlying mechanism that involves miRNA
binding proteins Argonaute 2 (AGO-2) and Fragile-X-metal
retardation related protein 1 (FXR1) has been recently (April
2022) proposed by Jame-Chenarboo and co-authors (Faezeh
Jame-Chenarboo, Hoi Hei Ng, Dawn Macdonald, Lara K. Mahal.
(2022). miRNA upregulate protein and glycan expression via
direct activation in proliferating cells. bioRxiv 2022.04.01.486772,
preprint).11 Therefore, the accumulated data warrant further
investigation into canonical and non-canonical miRNA action.

We verified the predicted Plaur-miR1-5p binding sites in
the promoter region of the selected genes (Figure 3A), as
well as in the intron region putatively located in the distal
enhancer regions (Figure 3B; Broughton et al., 2016). Our
hypothesis has been confirmed experimentally only for Mef2d
and Snrnp200 in Neuro2a cells. Specifically, we altered the Plaur
and Plaur-miR1 expression in these cells and established the
expression dependence of the target genes on Plaur and Plaur-
miR1 (Figure 7). Moreover, using Luciferase reporter assay we
confirmed the direct activating function of Plaur-miR1 on the
Mef2d expression via 3′-UTR interaction (Figure 8). Since Nrip3
and Emx2 expression was not detected in Neuro2a cells, the
Plaur-miR1 effect on these genes was impossible to evaluate.
These data suggest that the regulation of Plaur-miR1 target
mRNAs occurs at the DNA level resulting in the alterations
in mRNA expression. Herein, the identified targets play an
important role in physiology of the nervous system in normal and
pathological conditions. Emx2 is a transcription factor that plays
an essential role in specifying cell fates in the embryonic central
nervous system. Emx2 controls several biological parameters of
cortical neuroblast proliferation and subsequent cell migration of
postmitotic neurons in the mouse brain (Gulisano et al., 1996),
as well as imparts positional identity to cortical cells in the
developing neocortex (Bishop et al., 2002). Our current findings
are in accordance with the previously published papers revealing
that high Plaur expression stimulates neuronal migration to

11https://doi.org/10.1101/2022.04.01.486772

the outer layers of mouse neocortex during embryogenesis
(Shmakova et al., 2021), as well as the absence of GABA
neurons in Plaur-knockout mice (Powell et al., 2003). The most
plausible explanation for these data is that uPAR functions as a
morphogenic factor in the brain, realizing its action via Plaur-
miR1-5p and its target Emx2 (Gulisano et al., 1996).

Another target gene of Plaur-miR1, Mef2d, encodes
a developmental protein that regulates large-scale gene
expression programs necessary in embryogenesis and tissue
architecture maintenance, including the brain, and contributes
to the regulation of neurogenesis, neuronal apoptosis and
differentiation (Pon and Marra, 2016; Assali et al., 2019).
Mef2d gene disruption could be a risk factor for multiple
neurodevelopmental disorders and mental illnesses, such
as autism spectrum disorders, intellectual disability and
schizophrenia (Assali et al., 2019). Considering that Plaur
polymorphisms in humans are associated with cognitive
disorders (Campbell et al., 2008) in mice with behavioral
dysfunction and epilepsy (Powell et al., 2003), apoptosis of
neuronal cells in vitro (Rysenkova et al., 2018), as well as Plaur
gene knockout leads to impaired brain formation (Eagleson
et al., 2011), we hypothesize that these “protective” uPAR effects
on brain neurons may be implemented via Plaur-miR1 and its
target Mef2d.

In conclusion, we identified the novel Plaur-miR1 as a
functional miRNA of Plaur intron 3. Furthermore, we revealed
that the Plaur-miR1 expression specifically controls the MEF2D
expression at the mRNA and protein levels. Taking into account
our previously published data and the present results we suggest
a novel role for Plaur as a morphogenetic factor in brain
development and a marker of brain disorders.
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