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Abstract: Juniperus L. is the second-largest genus of conifers, having the widest distribution of all
conifer genera. Its phytogeographic history is, however, obscure due to its very poor fossil record.
We described a wood of Juniperus sp. from the lower Maeotian sediments of the Popov Kamen
section, Taman Peninsula, South Russia, in order to clarify its taxonomic position shedding light on
the phytogeographic history of the genus. This fossil wood was well-preserved by mummification,
which allowed for it to be studied by the same methods as used for the anatomical examination
of modern woods. The wood from the Popov Kamen section shows the greatest similarity to the
extant Mediterranean species J. excelsa, belonging to the section Sabina. This is the first reliable
macrofossil evidence of the sect. Sabina from Eurasia convincingly dated to the Miocene. The age
of the mummified wood from the Popov Kamen section is consistent with molecular dating of
diversification of the lineage comprising juniper species of the sect. Sabina from Europe, Asia and
eastern Africa. The wood of Juniperus sp. has not been buried in situ, as it was found in the relatively
deep-water marine sediments. The available coeval pollen series and macrofossils of Cupressaceae
from the surrounding regions suggest that this wood was likely transferred by sea current from the
northwestern side of the Black Sea, which was a part of the Eastern Paratethys.

Keywords: Cupressaceae; Eastern Paratethys; Maeotian; wood anatomy; conifers

1. Introduction

Juniperus L. is the second-largest genus of conifers, and the largest member of the
family Cupressaceae. Comprising 75 species [1], Juniperus has the widest distribution of
all conifer genera [2]. Most species of this genus are confined to forests and to shrubby
vegetations occurring in arid and semiarid regions throughout the Northern Hemisphere,
with a single species crossing the Equator in eastern Africa [3]. Adams [1] recognized three
monophyletic sections within this genus: sect. Calocedrus Endl., with a single species in the
Mediterranean; sect. Juniperus, with fourteen species in East Asia and the Mediterranean
plus one circumboreal species, J. communis L.; and sect. Sabina Spach, with 60 species
distributed in southwestern North America, Asia and the Mediterranean as well as in
eastern Africa and Macaronesia.

Molecular dating with fossil calibration shows that the Juniperus diverged from other
Cupressaceae in the late Paleocene to Eocene [4,5]. Axelrod [6] suggested that diversification
of junipers occurred within warm temperate semiarid vegetation of the Madrean–Tethyan
belts that ran along the southern areas of Eurasia and North America during Eocene and
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Oligocene. This scenario has been confirmed by molecular evidence [4]. The fossil record
for Juniperus is still too poor for comprehensive reconstructions of the history of this genus.

The most ancient fossils of Juniperus belonging to the sect. Sabina have been described
from the Eocene–Oligocene boundary in the Czech Republic [7]. Other fossils attributed
to this section were reported from the Oligocene to the middle Miocene deposits of North
America [8–11], from the Miocene–Pliocene boundary of Bulgaria [12] and from the Pliocene
of Bashkortostan, Russia [13]. At the same time, no reliable macrofossil evidence for
diversification of the sect. Sabina during the Miocene has been found in Eurasia. As for the
sections Juniperus and Calocedrus, their fossils are known only from the middle Miocene
and the Pliocene of Europe [12,14–16].

In this study, we present anatomical investigations of mummified wood belonging to
the genus Juniperus from the Late Miocene sediments of the Popov Kamen section, Taman
Peninsula, South Russia. We aim to clarify the taxonomic position of this fossil wood in
order to shed light on phytogeographical history of the section Sabina during the Neogene.

2. Results
2.1. Systematic Description

Order Coniferales Gorozhankin, 1904
Family Cupressaceae Gray, 1822
Genus Juniperus Linnaeus, 1753 [type: Juniperus communis L.]
Section Sabina Spach, 1841
Juniperus sp.
Material: PK-2020, three fragments of well-preserved mummified wood from an entire

fossil stem, discovered from the Late Miocene sediments of the Popov Kamen section,
Taman Peninsula, South Russia, deposited at the Laboratory of Paleobotany, Komarov
Botanical Institute, St. Petersburg, Russia. Duplicates of these samples were deposited at
the Department of Paleontology, Geological Faculty, Moscow State University, Moscow,
Russia (Figure 1).
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Figure 1. Fragments of fossil woody stem examined in the present study.

2.2. Description

Growth rings are distinct, 0.19–1.60 mm wide; the transition from earlywood to
latewood is gradual (Figure 2A). Earlywood tracheids are thin-walled (1.8–3.6 µm thick),
polygonal to oval in outline, 13–31 µm (mean 22 µm) in tangential diameter. Latewood
tracheids are thin- to moderately thick-walled (2.1–3.8 µm thick), circular to oval in outline,
12–24 µm (mean 11 µm) in tangential diameter. False growth rings occur. Normal and
traumatic axial resin ducts are not found. The bordered pits on the radial tracheid walls
(Figure 2F) are uniseriate, circular to oval in outline, with 5–9 µm in diameter and prominent
tori. Small bordered pits (3–5 µm) also occur on the tangential walls of the tracheids. Warty
layer, crassulae, helical and callitroid thickenings on the tracheid walls are not found.
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Figure 2. Wood structure of Juniperus sp., light microscopy. (A) Transverse section (TS), distinct
growth-ring boundary, gradual transition from earlywood to latewood, tangentially zonate axial
parenchyma. (B) TS, distinct boundary of growth ring, marginal axial parenchyma. (C) Tangential
longitudinal section (TLS), portions of axial parenchyma strands, nodular transverse wall, dark
deposits in axial parenchyma cells. (D) TLS, exclusively uniseriate low rays (up to 8 cells in height).
(E) Radial longitudinal section (RLS), ray cells with thickened pitted horizontal walls and nodular
end walls. (F) RLS, bordered pits on radial tracheid walls, cross-fields with 2–4 cupressoid pits. Scale
bars: 200 µm for (A,D), 100 µm for (B), 50 µm for (C,E), 20 µm for (F).

The axial parenchyma is abundant, tangentially zonate (Figure 2A) and occasion-
ally also marginal (Figure 2B); in strands of 2–4 cells with thickened pitted longitudinal
walls and nodular transverse walls (Figure 2C), sometimes with distinct indentures. Dark
deposits commonly occur in axial parenchyma cells (Figure 2C).

Rays are exclusively uniseriate (Figure 2D), completely composed of parenchyma
cells (ray tracheids absent), 1–9 cells high (mean 3.8 cells); ray cells are 17–28 µm (mean
22.7 µm) in height. The horizontal walls of ray parenchyma cells are moderately thick
and distinctly pitted (Figure 2E); the end walls of ray parenchyma cells are nodular, with
distinct indentures. Cross-field pits are cupressoid (Figure 2F) and taxodioid, circular to
oval, 4–6 µm in diameter of; cross-fields mostly have 2–4 pits (up to 5) pits on marginal
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portions of rays, and mostly 1–2 (up to 4) pits in central regions of rays. Radial resin ducts
are not found.

Dark-stained compounds are common in axial parenchyma cells and occur in ray cells.
Crystals are not found.

2.3. Comparison with Modern Woods

The fossil sample from Taman Peninsula represents a typical homoxylic wood, show-
ing the tracheids bearing large (up to 24 µm in diameter) circular bordered pits on radial
walls as well as exclusively uniseriate rays. This suite of traits occurs only in conifers.
The InsideWood [17] search for the combination of distinct growth-ring boundaries (40p),
absence of helical thickenings on tracheid walls (61a), tangentially zonate axial parenchyma
(72p, 74p), absence of ray tracheids (80p), distinctly pitted end walls of ray parenchyma
cells (86p), cupressoid cross-field pits (93p), average ray height < 4 cells (102p, 103a, 104a,
105a), absence of axial canals (109a), radial canals (110a) and traumatic canals (111a) re-
turns Fitzroya cupressoides (Molina) I.M. Johnst. and eight speices of Juniperus (J. californica
Carrière, J. chinensis L., J. drupacea Labill. J. excelsa M.Bieb., J. oxycedrus L., J. phoenicia L.,
J. rigida Siebold & Zucc., J. squamata Buch.-Ham. ex D.Don.). Among these species, the
presence of marginal axial parenchyma has been reported only in J. drupacea [18], J. excelsa
and J. oxycedrus [19,20]. J. drupacea and J. oxycedrus are distinctive, however, from the fossil
wood from Taman Peninsula by larger pits on tangential tracheid walls (6–10 µm and
8–10 µm in diameter, respectively, vs. 3–5 µm in the sample under study) and also by
the occurrence of higher (>10 cells in height, up to 18 cells in J. drupacea) rays. The latter
species also differs from the wood sample under study by fewer (mostly 1–2) pits per cross-
fields [21]. J. excelsa shows greater similarity with the Miocene wood, but it differs from the
fossil wood in thinner horizontal walls of the ray cells, and the occasional occurrence of
biseriate rays [19–21].

As the presence of marginal axial parenchyma is a prominent feature of the fossil
sample from Taman Peninsula, which is uncommon in the wood of conifers, we compared
it with other extant Juniperus species having this trait. Apart from J. drupacea, J. excelsa and
J. oxycedrus, marginal axial parenchyma has been reported in J. conferta [18], J. monosperma
(Engelm.) Sarg., J. thurifera L., J. scopulorum Sarg. and J. tibetica Kom. [19,20]. J. scopulorum
and J. thurifera differ from the fossil wood from Taman Peninsula by the occurrence of
larger pits (>10 µm in diameter) on tangential walls of tracheids [21]. J. thurifera is also
distinctive by much more numerous rays (190–200 rays per mm2 vs. 93–117 rays per mm2,
respectively), lower ray cells (10–18 µm vs. 17–28 µm in height, respectively), and the lack
of indentures [19,21]. Unlike our fossil wood, J. conferta has mostly unpitted end walls of
ray cells [18,21]. Then, J. scopulorum, J. monosperma, and J. tibetica share the occurrence of
higher rays (>10 cells in height, up to 16 cells in J. scopulorum) than the fossil wood from
Taman Peninsula. The latter two species and J. conferta are also distinctive from the sample
under study in having fewer (up to three) pits on cross-fields [21].

In summary, our fossil wood belongs to the genus Juniperus, but it cannot be convinc-
ingly placed into any modern species that have been examined to date by wood anatomists.
It shows the greatest similarity to the Mediterranean species J. excelsa, belonging to the
section Sabina.

2.4. Comparison with Fossil Woods

The fossil homoxylic woods showing a combination of spaced arrangement of circu-
lar pits on radial tracheid walls, cupressoid cross-field pits, nodular transverse walls of
axial parenchyma cells and usually also nodular walls of ray cells have been ascribed to
the genera Juniperoxylon Houlbert [22,23] and Juniperus [20,24]. Juniperoxylon pottoniense
(Stopes) Kräusel from the early Cretaceous of England [25] and the Eocene of Denmark [26]
and J. wagneri Süss & Rathner from the Miocene of Germany [27] are distinctive, however,
from other congeneric species and from the fossil wood under study in having smooth
horizontal walls of ray cells. The latter species as well as other members of Juniperoxy-
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lon, including J. zamunerae Ruiz & Bodnar from the Middle Triassic of Argentina [23,28];
J. breviparenchmatosum Watari & Nishida from the Eocene of Hokkaido, Japan [29]; Juniper-
oxylon acarcae Akkemik, from the early Miocene of the central Turkey [20]; and four species
from the Miocene deposits of Germany J. juniperoides (Kownas) Huard, J. pachyderma (Göp-
pert) Kräusel, J. rhenanum Burgh from North Rhine-Westphalia [30] and J. schneiderianum
Dolezych from Lusatia [31], differ from the fossil wood from the Taman Peninsula by the
presence of biseriate pitting on the radial tracheid walls, and by the occurrence of biseriate
rays. Finally, two fossil woods of Juniperus sp. from the early Miocene of the Galatean
Volcanic Province, northwestern Turkey [24,32], show greatest resemblance to the studied
wood sample, but both are distinctive in the lack of marginal axial parenchyma.

Overall, the mummified wood from the late Miocene deposits of the Taman Peninsula
shows a close affinity to some extant species from the section Sabina of the genus Juniperus,
as well as to the early Miocene woods from the northwestern Turkey assigned to the
Juniperus sp. Although the studied sample is distinctive from any woods of modern or
extinct junipers described to date, its anatomical traits are not sufficient for its reliable
taxonomic attribution. Thus, we do not consider the fossil wood as a new species of this
genus, but designate it as Juniperus sp. seemingly belonging to the section Sabina.

3. Discussion

The mummified wood of Juniperus sp. from the lower Maeotian sediments of Taman
Peninsula is the first reliable macrofossil evidence of the section Sabina from Eurasia whose
age is convincingly dated to the Miocene. The most ancient fossils of junipers attributed to
this group have been described from the Eocene/Oligocene boundary of north Bohemia,
the Czech Republic [7]. More recent Neogene record of the section Sabina includes three
extinct species from the Oligocene to the middle Miocene of the North America [8–11]
as well as the fossil twigs ascribed to the extant J. foetidissima from the Miocene–Pliocene
boundary from the Sofia Basin, Bulgaria [12], and the seeds of J. sabina from Bashkortostan,
Russia [13]. The mummified wood of Juniperus sp. from the Popov Kamen section shows
that the species of this lineage occurred in the regions adjacent to Eastern Paratethys at
least since the early Maeotian age.

Obviously, the wood of Juniperus sp. has not been buried in situ, as it was found in
relatively deep-water marine sediments. The only coeval occurrence of the pollen grains
ascribed to Juniperus sp. has been reported from the lower Maeotian deposits of Odessa
Oblast, southern Ukraine [33]. More ancient pollen evidence for this genus was found in
the Sarmatian deposits of Kartli, eastern Georgia [34]. As for the macrofossils, the cone of
J. bessarabica Negru has been described from the lower Sarmatian of Moldova [14] (Figure 3).
This extinct species shows greatest affinity to the section Juniperus, i.e., to another lineage
of junipers than the fossil wood under study attributed to the section Sabina. Cupressaceae
have not been reported, however, in other pollen series studied in the Sarmatian and
Maeotian deposits of the Eastern Paratethys regions, including those from the Taman
Peninsula [35,36], the Lower Don [37], Bulgaria [38], Abkhazia [39] and several localities of
Georgia [40]. No macrofossils of Juniperus have also been found in coeval paleofloras in
southern Ukraine [33], Krasnodar Krai of Russia [41] and Georgia [40,42,43]. The available
data suggest, therefore, that the wood of Juniperus sp. was likely transferred by sea current
from the northwestern side of the Black Sea, which was a part of the Eastern Paratethys in
the Miocene. Transportability of driftwoods over large distances has been supported by
strong evidence [44].

The fossil wood of Juniperus sp. shows the greatest similarity to the extant Mediter-
ranean species J. excelsa, belonging to a well-supported “clade IV” within the section
Sabina [4]. This lineage also comprises the European species J. thurifera, the Asian J. chinensis
and J. polycarpus, as well as J. procera from east Africa and south Arabia. As suggested by
molecular dating [4], this lineage has been diversified during the Miocene. This estimation
is consistent with the age of the fossil wood of Juniperus sp. from the Popov Kamen section.
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The reported fossil records of this group, up to now, are too sparse, however, for detailed
reconstruction of its phytogeographic history.
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Figure 3. Locations of the Popov Kamen section (PK, yellow asterisk) and coeval fossils of Juniperus
from the regions adjacent to the Black Sea (red asterisks). The Paratethys area configuration at the Late
Miocene is marked by dotted line. 1: The cone of Juniperus bessarabica Negru from the lower Sarmatian
of Moldova [14]. 2: Pollen of Juniperus sp. from the lower Maeotian of southern Ukraine [33].
3: Pollen of Juniperus sp. from the Sarmatian of eastern Georgia [34].

4. Materials and Methods

Three fragments of totally mummified portion of entire tree trunk, 23 cm in length
and 7 cm in diameter, without any traces of organisms feeding (Figure 1), were collected
from the Upper Miocene sediments of the Popov Kamen section (Figures 3 and 4A,B). This
trunk shows about 50 growth rings (some rings are hardly detectable) on its cross section.

Since its first description by Andrusov [45], this geological section has been exten-
sively studied, using paleomagnetic, paleontological, and lithological methods of investiga-
tion [45–52]. The Popov Kamen section is located on the Black Sea coast of Taman Peninsula
(45◦16′01.8” N, 36◦61′97.6” E, Russia) and comprises well-exposed Upper Sarmatian as
well as Lower and Upper Maeotian sediments of the Eastern Paratethys. These sediments
mainly represent clays with sporadic diatomite and limestone layers. The large bryozoan
build-ups are located at the base of the Lower Maeotian, which directly underlie and overlie
clays. The studied fossil wood was found in the clays laying 1.5–2 m above the top of the
large bryozoan build-ups; these clays contain no fauna. The Lower Maeotian sediments of
the Popov Kamen section accumulated in relatively deep-water environments (at depths
of 50–75 m [46,47]). The Maeotian started with a marine transgression, which increased
salinity back to 18‰ and flooded marginal areas of the Eastern Paratethys. At the Late
Sarmatian, the Eastern Paratethys was mainly isolated. The sea level became unstable and
a regression caused exposure of marginal parts of the basin, as well as a significant decrease
in salinity down to 4–9‰ [53].
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