
A connection of series approximations and the
basis of the Krylov space in block algorithms of

Coppersmith and Montgomery.

Mikhail Cherepniov1

Moscow State University, Moscow Leninskiye gory 1, mechanics-mathematics faculty,
number theory department, Russia

Abstract. In this paper some properties of Wiedemann-Coppersmith
algorithm are studied. In particular, when matrix of solving linear system
is symmetric, orthogonal bases of Krylov space is constructed with the
help of approximations of formal series from this algorithm. Here some
modifications, that explore this properties is proposed.

This paper studies the problem of solving large sparse linear systems over
IF = GF (2), that is a part of integer factorization algorithm. Now block Mont-
gomery 12, and Wiedemann-Coppersmith 11 algorithms are used for this pur-
pose. The next of them was speeding up by Thomé 1 with the help of additional
memory volume. This volume is too big for parameters that give fastest imple-
mentation 2.

In this paper we examine common principles of Montgomery and
Wiedemann-Coppersmith algorithms to explore advantages of each other.

Mention that in both Wiedemann-Coppersmith and Montgomery’s algo-
rithms solution constructs with the help of its coefficients in Krylov space. It’s
easy to see that solution coefficients in Krylov space is a coefficients of some
rather good approximation of the series with positive degrees of formal value.
They may be found by sequentially increasing of the order of the approximations
as it was made by Coppersmith in 11, or with comparatively small number of
approximations with orders equals to degrees of two as in [9,10]. Mention that in
these works constructs a bases of all approximations with the help of asymptot-
ically faster algorithm with complexity bound O(Nlog2NloglogN), contrary to
O(N2) for Coppersmith’s one. However constant in O in the first bound is rather
big and increase with block factor, that decrease time for the whole algorithm
when parallelization is used. In record calculations (12.12.2009 was factorized
RSA-768 with 232 decimal digits or 768 bits) was utilized the procedure 2 same
to the Coppersmith’s, but that constructs only ”good” approximations with
degrees equals to the degrees of two. Weak of both procedures is necessity to
utilize an algorithm of matrix polynomial product 4, 11 that have a bad parallel
properties and demands to increase memory.

Another remark is that in all algorithms except Montgomery’s, sequence
AiY,A ∈ FN×N , Y ∈ Fn×N , F = GF (2), i = 0, . . . ,≈ 2N

n constructs twice and
product on matrix A is hard.

1 Block factor

Utilization of the block factor that is replacement of n by n1 = ns, is very
effective for algorithms like Wiedemann-Coppersmith algorithm, because paral-
lelization on s sites may s times decrease time for construction AiY .

It should be mentioned that matrix polynomial multiplication algorithm,
that was utilize in 2, demands additional memory (1TB total, when s = 8). So
restriction of cluster memory make it impossible to take optimal value s to make
total time minimal.

2 Reduction to the symmetric case

For reduction of solving nonsymmetric linear system to symmetric one, a re-
placement of A by ATA is usual. So calculations AiB for some B obtain the
form (ATA)iB. How harder is it?

Because of the big size, matrix A divides into vertical blocks

A = (A1 ∥ A2 ∥ . . . ∥ Ak)

that are stored on the different parts of memory.

Let calculation node with number j stores Aj , and corresponding parts of
some previous calculations. Let

(ATA)iB =


Vi1

Vi2

· · ·
Vik

 , (1)

where Vij stores on node with number j too, j = 1, · · · , k. It’s clear that inner
products V T

i Vi and products Vig will have good parallel properties, because of
the minimal communication between such nods.

Matrix AjVij ∈ IFN×n is calculated on nod with number j, that stores Vij and

Aj . A summarizing of AVi =
∑k

j=1 AjVij demands total exchange of AjVij . This
is realized with the help of cyclic sending algorithm 5. Time for sending in this
algorithm doesn’t depend on k. Mention that if we separate vectors stored on the
each nod in two parts and each part sum in different directions, then common
time of summation decreases in two times in modern duplet sets. The result
AVi is multiplied on AT

j by node number j, so we may start the next iteration.

So addition multiplication by AT increases time for calculation in two times,
but doesn’t increase time for sending, that is defining. Memory demands is the
same. Moreover, calculation time may be decreased with the help of increasing
the number of calculation nodes k.

3 Algorithms which construct approximations fast

There are several algorithms, that construct approximations for formal series in
recursive way 1, 9, 10. The main idea is: Let formal series α(λ) ∈ IFl×m[[λ]] has
approximation G1(λ) ∈ IFm×m[λ] with order d:

α(λ)G1(λ) = O(λd).

Let G2 is the same approximation for α(λ)G1(λ)
λd , and both of them satisfy some

important properties for our algorithm. In several cases it is possible to demon-
strate that product G1 ·G2, that is the approximation of order 2d, satisfies this
properties too. So we construct approximation with the order 2k by construction
of two approximations of order 2k−1 and multiplication of matrix polynomials.
In considered cases, the degrees of these polynomials are no more than the order
of corresponding approximations, and the mean value of degrees of columns is
equal to the half of it. It’s important, that when we start the calculation of G2,
the calculation of G1 must be finished. So these calculations are not parallel. It’s
easy to see, that for the calculation of approximation of order 2k by this algo-
rithm, it is necessary to calculate 2i approximations of order 2k−i, i = 0, 1, . . . , k.
Total number of approximations became two times more, then in corresponding
sequential construction. On the other hand, only 2k approximations of the first
order are calculated directly. The calculation of each of other are replaced with
one matrix polynomial multiplication with total number of operations in the
field of coefficients of considered polynomials bounded with O(2k · kc), where c
is some absolute not great constant.

A work with matrix polynomials of the high degree demands a big memory
volume. This volume considerably increase when we use fast algorithm of poly-
nomial matrix multiplication, and this becomes critical. This additional increase
expressed in some logarithmic factor to demanded memory. This factor escapes
when sequential algorithm used. Running time of such algorithm in original is
longer: O(22k), but, it may be reduced by every step optimization.

As it was mentioned above, Wiedemann-Coppersmith’s algorithm constructs
series twice. In this article we propose an economy in this place. Corresponding
increase of number of steps may be compensate with simplification of each of
them.

4 The correspondence between approximations of series
with positive and negative powers of formal value.

Let

α(λ) =
∞∑
i=0

αiλ
i ∈ IFn×n[[λ]].

Let’s consider a transformation ”point” (sometimes it is named a ”mirror”,
see rev in 11):

α̇(λ) = α(λ−1),

for series, and

Q̇ = Q̇(λ) = λtQ(λ−1),

for polynomials with degree t.
Let’s consider Pade approximations to the series with positive powers of

formal value:

α(λ)Q(t)(λ) + P (t)(λ) =
∞∑

i=2t+1

ρ
(t)
i λi,

Q(t)(λ) ∈ IFn×2n[λ], P (t)(λ) ∈ IFn×2n[λ], degQ(t), P (t) ≤ t.

Sometimes (9, 10) another notations are accepted:

(α(λ)∥In)
(
Q(t)

P (t)

)
= O(λ2t+1) (2)

(In is a unit matrix with the size n), that we will denote as ord+G(t) ≥ 2t+ 1,
or ord+Q(t) ≥ 2t+ 1, where

G(t) =

(
Q(t)

P (t)

)
. (3)

Let’s denote an upper part of G(t) by Q(t).
It’s easy to see that Q̇(t), Ṗ (t) will be Pade approximations for corresponding

series with negative powers of formal value:

α̇(λ)Q̇(t)(λ) + Ṗ (t)(λ) =
∞∑

i=t+1

ρ
(t)
i λ−i,

or

(α̇(λ)∥In)
(
Q̇(t)

Ṗ (t)

)
= O(λ−(t+1)), (4)

that we will denote as ord−Ġ(t) ≥ t+ 1, or ord−Q̇(t) ≥ t+ 1, where

Ġ(t) =

(
Q̇(t)

Ṗ (t)

)
. (5)

It’s clear by construction, that for arbitrary matrix polynomial with corre-

sponding size: degG = degĠ, ˙̇G = G, ord+Ġ = ord−G + degG, or ord+Ġ −
2degĠ = ord−Ġ− degG = c(G). So Pade approximations transform by ”point”
to Pade approximations, and the property c(G) ≥ 1 is characteristic for them..

Let’s mention here, that if

α̇(λ)Q̃(t)(λ) + P̃ (t)(λ) =

∞∑
i=t+1−δ

ρ̃
(t)
i λ−i, δ ∈ {0, 1, . . . t}, degQ̃(t), P̃ (t) = t,

then

α(λ) ˙̃Q
(t)

(λ) + ˙̃P
(t)

(λ) =
∞∑

i=2t+1−δ

ρ̃
(t)
i λi,

or

ord+ ˙̃G
(t)

= ord+

 ˙̃Q
(t)

˙̃P
(t)

 ≥ 2t+ 1− δ. (6)

If 2t ≥ δ, and constant term of the polynomial ˙̃Q
(t)

is equal to zero, then

constant term of the polynomial ˙̃P
(t)

is equal to zero too.

So ord+λδ ˙̃G
(t)

(λ) ≥ 2t+1, and δ lowest terms of this matrix polynomial are
equal to zero. Approximations, with these properties, evidently, formes a linear
subspace over IF[λ].

As it was mentioned, we consider symmetric case: A = AT .
Let’s define for arbitrary polynomial Q(λ) =

∑degQ
i=0 λiQi ∈ IFn×2n[λ], ma-

trix A ∈ IFN×N and start block B ∈ IFN×2n blocks of vectors Q(A,B)− and
Q(A,B)+ by formulas

Q(A,B)− =

degQ∑
i=0

AiBQi, (7)

Q(A,B)+ =

degQ∑
i=0

AdegQ−iBQi = Q̇(A,B)−. (8)

Let’s mention, that if we consider polynomial Q, as the polynomial of degree
degQ + 1 with zero constant term, then a defined block may be obtained from
the previous by left multiplying by A. So, corresponding definition depends on
formal degree of polynomial, that we define, if it is not clear, as a degree of non
zero monomial of considered polynomial with a maximal degree. We will append
zero terms, if it will be necessary to consider this polynomial as polynomial with
bigger degree, which is not clear by the context.

Let’s mention, that if B ∈ IFN×n, Q(i)(λ) ∈ IFn×n[λ], degQ(i)(λ) = i, and
constant terms of this polynomials are nonsingular, then the equality of linear
spaces over IF is realized:

⟨AiB, i = 0, . . . , t⟩ = ⟨Q(i)(A,B)+, i = 0, . . . , t⟩.

Let’s define a scalar product (Q1, Q2)
+ of matrix polynomials Q1(λ), Q2(λ) ∈

IFn×2n[λ] as a coefficient at λdegQ1+degQ2+1 in the series

QT
1 (λ)α(λ)Q2(λ).

It’s easy to see, that this scalar product is equal to the coefficient at λ−1 in the
series

Q̇T
1 (λ)α̇(λ)Q̇2(λ),

that is equal to scalar product (Q̇1, Q̇2)
−, defined in 8, and linear in both argu-

ments.
Transformation ”point” preserves product:

˙(Q1Q2) = Q̇1Q̇2,

and
˙(Q1 +Q2) = Q̇1 ⊕ Q̇2,

where ⊕ is a sum of polynomials, when main terms are summed and a degree of
this sum is a maximum of degrees of items. So, from (8) we obtain that defined
(Q1, Q2)

+ will be linear relative to ⊕. As it was proved in 8,

(Q̇1(λ), Q̇2(λ))
− = (Q̇1(A,B)−)TAQ̇2(A,B)−,

so,

(Q1(λ), Q2(λ))
+ = (Q̇1(λ), Q̇2(λ))

− = (Q̇1(A,B)−)TAQ̇2(A,B)−

= (Q1(A,B)+)TAQ2(A,B)+.

5 Sequential algorithm

We will show, how to construct solution with the help of sequential technic of 11
and a defined scalar product. Approximations G(i)(λ) ∈ IF2n×2n[λ] of the series
(α(λ) ∥ In) ∈ IFn×2n[[λ]] construct as follows:

Columns of matrix

G(1)(λ) =

(
In On

α0 λIn

)
, (9)

evidently forme a bases of approximations of order one. Let for some i:

(α(λ) ∥ In)G
(i)(λ) = Ciλ

i(1 +O(λ)), Ci ∈ IFn×2n. (10)

Let τi is a nonsingular matrix, that gives matrix Ciτi in lower triangular form,
and we will denote a number of nonzero columns in it as ni. Then

G(i+1)(λ) = G(i)(λ)τi

(
λI2n−ni O

O Ini

)
. (11)

Since linear space of approximations of order i+1 is inserted in linear space
of approximations of order i with columns of G(i)(λ)τi as bases, then we obtain,
that columns G(i+1)(λ) form bases of approximations of order i+ 1 from (10) .

If we denote

G(i)(λ) =

(
Q(i)(λ)
P (i)(λ)

)
, Q(i)(λ), P (i)(λ) ∈ IFn×2n[λ], (12)

then under construction degQ(i)(λ) ≤ i− 1, and

Q(i+1)(λ) = λQ(i)(λ)τi1+Q(i)(λ)τi2 = λQ(i)(λ)τi1⊕(Q(i)(λ)τi2+O2nλ
degQ(i)+1),

where O2n ∈ IFn×2n is a zero matrix, and τi1, τi2 ∈ IF2n×2n. So,

Q(i+1)(A,B)+ = Q(i)(A,B)+τi1 +AQ(i)(A,B)+τi2,

Since degQ(i)(λ) = i− 1, then scalar product

(Q(1)(A,B)+)TAQ(i+1)(A,B)+ = (Q(1)(λ), Q(i+1)(λ))+ = Q
(1)
0

T
Ci+1 =

(
Ci+1

On

)
(13)

with the help of previous equality, gives Ci+1, and
Q(i+1)(A,B)+, AQ(i+1)(A,B)+, . . . , Ak−1Q(i+1)(A,B)+ may be calcu-
lated from Q(i)(A,B)+, AQ(i)(A,B)+, A2Q(i)(A,B)+, . . . , AkQ(i)(A,B)+,
without using coefficients of the series α(λ), a calculation of which
is unnecessary. So only one multiplication of matrix A by block
Ak−1Q(i+1)(A,B)+ ∈ IFN×2n exists in each step of our algorithm, and it
gives us Q(i+1)(A,B)+, AQ(i+1)(A,B)+, . . . , AkQ(i+1)(A,B)+.

For the construction of the whole Krylov space as linear space of blocks, it
is necessary to construct the sequence of approximations

˜̃G
(r)

(λ) =

 ˜̃Q
(r)

(λ)

˜̃P
(r)

(λ)

 ∈ IF2n×n[λ], deg ˜̃G
(r)

= r, r = 0, 1, . . . ,≈ N

n
, (14)

that have nonsingular matrix in upper parts of constant terms. We will use
approximations G(2r+1)(λ), that was constructed in the steps with odd numbers,
and will do transformations as follows:

Let d(j, 2r+1) is a degree of column with a number j of G(2r+1)(λ), as matrix
polynomial.

Iteration 1: Consider columns with degrees d(j, 2r+1) ≤ r. If upper parts of

their constant terms forme a matrix with rang n, than ˜̃G
(r)

(λ) may be formed
by those of them, that have linear independent upper parts of constant terms.

Iteration 2: In other case we will consider linear space of columns over IF[λ],
with respect to ordinary addition, which degrees d(j, 2r+1) ≤ r+1, and upper
parts of constant terms are zeros. Since this columns are approximations their

constant terms are whole zeros. Columns, that was selected on the first itera-
tion, multiplying by λ, will be inserted in this space. If they are not a bases of
the whole considered subspace, we may select columns that forms bases of the
complementation in it. If we divide this columns by λ, we will obtain degree
r and order 2r. Let’s complement columns, selected on the first iteration, with

them. If a number of selected columns is equal to n, than we obtain ˜̃G
(r)

(λ).
Iteration 3: If on the 2 iteration we didn’t obtain necessary columns, let’s

consider columns with the property d(j, 2r + 1) ≤ r + 2 and upper parts of two
lowest terms which are equal to zero and so on... .

Let’s denote v(r) a number of necessary iterations and consider it as a random
value dependent on matrix coefficients of using approximations, which we will
consider as independent random values.

Theorem 1. Mean value v(r) ≤ 1, 76. If log2
N
n > 10, then probability that

maxs δ(s) ≤ 4 log2
N
n is more than 0,99.

Proof. In 8 it was shown, how to construct approximations Q̃(s)(λ) ∈
IFn×n[λ], degQ̃(s) = s, to the series α̇(λ) =

∑∞
i=0 αiλ

−i with nonsingular princi-

pal terms Q̃
(s)
s , so that

α̇(λ)Q̃(s)(λ)− P̃ (s)(λ) =
∞∑

i=s+1−δ(s)

α̃
(s)
i λ−i, (15)

for some P̃ (s)(λ) ∈ IFn×n[λ], degP̃ (s) = s, where δ(s) is not big. Nonzero columns

of matrixes α̃
(s)
s+1−l, l > 0, situated on the right, and with a quantity u(s)(l) that

doesn’t increase when l increases.
We have

α(λ) ˙̃Q
(s)

(λ)− ˙̃P
(s)

(λ) =
∞∑

i=2s+1−δ(s)

α̃
(s)
i λi. (16)

Let’s denote

˙̃G
(r)

=

 ˙̃Q
(r)

˙̃P
(r)

 . (17)

This matrix polynomial has nonsingular upper part of constant term and may

be taken as ˜̃G
(r)

. However iterations 1-3 construct such a polynomial directly
with value no bigger then δ(r).

Columns of matrix polynomials λ ˙̃G
(r)

(λ), on positions

u(r)(2) + 1, . . . , u(r)(1), (18)

regarding from the right, will situate in the linear space, that was describe in
iteration 2.

In the case of δ(r) = 1 we have: u(r)(2) = 0, and upper parts of columns of

polynomial ˙̃G
(r)

(λ) on positions (18) complement upper parts of constant terms
of columns, selected on iteration 1, to full rank matrix (nonsingular). This is
because linear space over IF[λ] of columns, selected on the 1 iteration, contains

columns of ˙̃G
(r)

(λ) situated on positions u(r)(1) + 1, . . . , n, regarding from the
right.

Columns, situated on positions u(r)(3) + 1, . . . , u(r)(2) in matrix polynomial

λ2 ˙̃G
(r)

(λ) situate in the linear space, described in iteration 3, and so on As it
was mentioned above, the Wiedemann-Coppersmith algorithm constructs matrix
approximations which columns forms bases over IF[λ], with respect to ordinary
addition, of all approximations of corresponding order. So, considered images
may be chosen in 2 and 3 iterations and so on The whole number of iterations,
that is necessary to construct approximation with nonsingular constant term is
no more than δ(r).

As it was calculated in 13, if log2
N
n > 10, then with probability 0,99 maxs δ(s) ≤

4 log2
N
n , and mean value δ(s) is no more than 1,76.

The whole number of steps of construction of approximations in our algorithm
is approximately equal to 2N

n . We use half of them for construction Krylov space.

Approximations ˜̃Q
(i)

(λ), that we have constructed, have a degree i, nonsin-
gular constant terms and order less than 2i+ 1 by number δ′(i) ≤ δ(i):

α(λ) ˜̃Q
(i)

(λ)− ˜̃P
(i)

(λ) =
∞∑

l=2i+1−δ′(l)

˜̃α
(i)

l λl, (19)

Therefore, if j < i− δ′(i), we have:

(˜̃Q
(j)

(A,B)+)TA ˜̃Q
(i)

(A,B)+ = 0,

and when i− δ′(i) ≤ j ≤ i, we have:

(˜̃Q
(j)

(A,B)+)TA ˜̃Q
(i)

(A,B)+ = (˜̃Q
(j)

(λ), ˜̃Q
(i)

(λ))+ =
∑

k+l=j+i+1

˜̃Q
(j)T

k
˜̃α
(i)

l ,

(20)

where ˜̃Q
(j)

(λ) =
∑j

l=0
˜̃Q
(j)

l λl, and sum to the right in (20) contains no more
than δ′(l) + 1 terms.

Under construction, ˜̃Q
(r)

(λ) = Q(2r+1)(λ)(τr0 +
1
λτr1 + . . .+ 1

λδ′(r) τrδ′(r)) for

some τri ∈ IF2n×2n. Therefore,

˜̃Q
(r)

(A,B)+ =

δ′(r)∑
i=0

AiQ(2r+1)(A,B)+τri,

and if k = maxi δ
′(i) we can calculate ˜̃Q

(r)

(A,B)+ from

Q(2r+1)(A,B)+, AQ(2r+1)(A,B)+, . . . , AkQ(2r+1)(A,B)+

in every step of our algorithm.

Not hard additional orthogonalization gives next term of A orthogonal bases
Wi of Krylov space at the same time with the next term in sum:

X =

≈N
n∑

i=0

Wi(W
T
i AWi)

−1WT
i B. (21)

Then we construct solution with the help of this block and standard Mont-
gomery’s technic from 12.

Additional orthogonalization demands storing of some sequential blocks from
orthogonal bases of Krylov space, and calculation of scalar product of them to
the next constructed block. A number of these blocks is bounded with value
δ′(s) ≤ δ(s).

It’s not very hard to construct a procedure, that forms approximations, satis-
fying condition (15) with δ(s) = 1. So, we have a good reason for supposing, that
real running time of our algorithm is shorter, and iteration 3 is not necessary,
sometimes iteration 2 is not necessary too.

The lower bound of memory is

max
s

δ(s) ·Nn = O(nNlnN),

that is approximately equal to demands of algorithm Thomé 1. If δ(s) ∈ {0, 1},
these demands become much less.

6 Parallel algorithm

Coefficients Ci can be constructed as in 11 with the help of convolution of poly-
nomial G(i) and series α in every step of described algorithm. Because of (20),

additional orthogonalization can be done for polynomials ˜̃Q
(i)

(λ), and ˜̃α
(i)

l (λ) are
constructed with the help of convolution with the series α. As a result, we obtain
orthogonal bases of Krylov space in the view of polynomials Wi(λ), that give
Wi = Wi(A,B)+. So, formula (21) gives X(λ), degX ≈ N

n , and X = X(A,B)+,

that is constructed when we calculate AiB, i = 0, 1, . . . ,≈ N
n repeatedly.

7 Conclusion

Proposed sequential algorithm do similar steps to algorithm P.Montgomery 12.
The number of multiplications by A in it is two times more. Utilization of technic
from 11 permit to decrease time for additional orthogonalization of constructed
blocks relative to previous, with the help of reduction of their number from 3
to 1 or less. It’s hard to utilize parallel systems here because of the necessity to
gather matrix Ci (13) in every step.

If one construct sequential approximations in parts with calculation of cor-
responding parts of solution coordinates, then it is not necessary to do 3 and 4
steps. In that case we must store only some part of Krylov space that demands
less memory. So not so big cluster is need. Besides one can remember only part
of Krylov space and not construct it twice.

To compare with the Montgomery’s algorithm, mention that left multiple
in (13) is constant. So scalar products may be calculate on the computer nod
that obtain right multiple. This eliminate time for transfers, that is dominant.
Scalar product of vectors replaced with scalar product of polynomials and take
less time and memory. Number of vector additions in two steps is approximately
two times less then in Montgomery’s algorithm that have two times less steps.
Number of stored vectors is four times less.

Analogous algorithm can be made for σ-bases construction 10.
Of cause, our algorithm, like Wiedemann-Coppersmith algorithm, demands

products on big sparse matrix two times more than in Montgomery’s algorithm.
Nevertheless this products are in procedure of construction of series coefficients.
This procedure may be very good parallelized in the Internet.

References

Thomé E.: Subquadratic computation of vector generating polynomials and improve-
ment of the block Wiedemann algorithm. Journal of Symbolic Computation, 33:5,
757–775 (2002)

Kleinjung T., Aoki K., Franke J., Lenstra A.K., Thomé E., Bos J.W., Gaudry
P., Kruppa A., Montgomery P.L., Osvik D.A., Riele H., Timofeev A., Zimmer-
mann P. Factorization of a 768-bit RSA modulus. version 1.0, January 7, 2010.
http://eprint.iacr.org/2010/006.pdf

Kaltofen E.: Analysis of Coppersmith’s block Wiedemann algorithm for the parallel
solution of sparse linear systems. Math. Comp., 64(210), 777–806 (1995)

Jeannerod C.-P. and Villard G. Asymptotically fast polynomial matrix algorithms for
multivariable systems, Int. J. Control, 79(11):1359- 1367, (2006)

Barnett M., Littlefield R., Payne D.G., van de Geijn R.: Global Combine on Mesh Ar-
chitectures with Wormhole Routing. Journal of Parallel and Distributed Computing
archive, Volume 24, Issue 2 (Feb. 1, 1995)

Villard G.: A study of Coppersmith’s block Wiedemann algorithm using matrix poly-
nomials. RR 975-I-M IMAG Grenoble France, (April 1997)

Nesterenko Y.V., Cherepnev M.A., and others: Tecnical report ”Investigation of algo-
rithms of solving of systems of algebraic equations over finite fields on clusters”,
(2008)

Cherepnev M.A.: Block Lacos based algorithm of solvingsparce linear systems. Diskret.
Math., v.20, no.1, p.145–150 (2008)

Giorgi P., Jannerod C-P., Villard G.: On Complexity of Polynomial Matrix Computa-
tions. ISSAC’03, August 3–6, Philadelphia, USA (2003)

Beckermann B. and Labahn G.: A uniform approach for the fast computation of Matrix-
type Pade approximants. SIAM J., Matrix Analysis and Applications (1994)

Coppersmith D.: Solving homogeneous linear systems over GF(2) via block Widemann
algorithm. Mathematics of Computation, vol. 62, no. 205 (1994)

Montgomery P.L.: A Block Lanczos Algorithm for Finding Dependencies over GF(2).
Advances in Cryptology - EuroCrypt’95 / Louis C.Guillou and Jean-Jacques
Quisquater, rditors. Berlin: Springer-Verlag (Lect. Notes in Comp. Sci. V.921) 106–
120 (1995)

Astakhov V.V.: Estimstes of the running time and memory requirements of the new
algorithm of solving large sparse linear systems over the field with two elements.
A Journal of Tambov State University, The works of participants of International
conference ”ParCA” presented according to the results of reviewing by International
Program Commettee, V.15, Iss.4, .1311-1327 (2010)

