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Abstract⎯A detection of the conditions of high-rate single crystal growth with an appropriate quality
is a priority for an industrial production of crystalline materials. The crystals of potassium dihydrogen
phosphate (KDP) are the important optical materials. They are growing from water-salt solutions.
The flow and mass transfer are modeled within the framework of continuous medium, which is con-
sidered as a water solution of a special salt-potassium dihydrogen phosphate. This salt dissolves in
water to a saturation level at a high temperature. Then, such supersaturated solution is used to grow
crystals at lower temperatures in static crystallizers (without inflow and outflow) and in continuous-
flow crystallizers. The mathematical model is considered in a conjugate formulation with taking into
an account of mass transfer in “solution–crystal” system. The local features of hydrodynamics and
mass transfer in a solution near a surface of growing crystal are established, which may affect to a local
(for a particular place and direction) crystal growth rates and a defect formation. The requirements to
the crystallizers for providing a “necessary” solution hydrodynamics are discussed. The validation of
this model is shown for the task of f low around a long horizontal plate, which simulating the growing
crystal facet. The rate of salt precipitation is estimated by means of proposed mathematical model, in
which a solution flow and salt concentration are calculated by solving Navier-Stokes and mass transfer
equations for an incompressible f luid. Then the calculated salt f lux on crystal surface is applied in a
thermodynamic relationship for a normal growth of facets under conditions of two-dimensional
nucleation. The action of continuous-flow crystallizers was analyzed for various solution inflows
(axial and ring) and its outf low through the bottom hole.
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1. INTRODUCTION
May be the two possible mechanisms of layer-by-layer growth of crystals: dislocation-spiral and two-

dimensional nucleation. At the high supersaturation of solution, the conditions for realizing the mecha-
nism of two-dimensional nucleation are created [1].

In this case, the growth sources are two-dimensional nuclei formed over the entire crystal surface. The
first time at super-high supersaturations 0.55 – 0.6, KDP crystals with linear dimensions ~10 mm were
grown [2].

Steady reproduction of such crystal growth causes the development of new devices and technological
regimes for high-speed growth of KDP crystals. This is connected with the formulation and solving little
studied or essentially new problems of hydrodynamics and mass transfer in water-salt solutions character-
ized by the three-dimensionality of a container, the channels of solution inflow and outflow, the complex
geometry and location of a crystal in a solution volume, by the presence of rotating or vibrating devices for
intensifying mixing [3–5], etc.

Convection in solution may both increase a growth rate and enhance a morphological instability of
crystal growth surface, which may worsen a crystal quality. From an experimental study [6] follows: the
convection may lead to an inclusion formation. However, in other work it was noted that the convection
leads to a weakening an inclusions formation [7] and assists to an increase of a growth rate without cor-
rupting a crystal quality [8].
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A number of experimental [9–12] and theoretical [13, 14] studies were carried out to determine a con-
vective influence on the morphological growth instability and inclusions formation. It was shown that the
solution f low direction near the solution/crystal boundary significantly influences on an appearance of
morphological growth instability. If a f low is directed against a movement of growth steps, the morpho-
logical growth stability is preserved. On the contrary, the solution f low along the steps direction leads to a
morphological instability.

The study [15] has showed that a morphological stability may be significantly enhanced by creating the
reverse f lows. However, the reversible f lows creating by means of a reversibly rotating crystal do not cover
the entire crystal surface. Therefore, a large area of crystal surface remains as morphologically unstable
and the problem of inclusions formation remains, too. The supersaturation distribution of a growth sur-
face depends on the direction and rate of solution f lows. This value plays a significant role in an emergence
and development of morphological instability, as well as in inclusions formation.

It was shown in [16] that the crystal rotation rate affects to a surface supersaturation distribution and a
magnitude of “stepwise bend” and, as a consequence, this determines a morphological stability of crystal
growth and inclusions formation. It was shown in [17] that a change in the f low characteristics near the
crystal surface by adjusting its orientation may eliminate the regions of low supersaturation on crystal sur-
face and limit the inclusions formation. It is assumed that there is a relationship between the distribution
of surface supersaturation and inclusions formation. Therefore, in known experiments the location of a
region having the low supersaturation corresponds to a region with inclusions.

The f low and mass transfer in solution systems determine supersaturation on the crystalline surface.
However, an experimental determination of the surface saturation distribution is difficult. Therefore, it is
important numerical simulation of a f low and mass transfer taking into an account of a crystal growth from
the solutions. Such work has been carried out in [18], where three-dimensional and time-dependent f lows
have been studied for KDP crystal growth and their essential effect on crystal growth was shown. In [19],
a two-dimensional simulation of the combined effect of forced and natural convection on KDP crystal
growth has been carried out, which has showed that for a suppression of natural convection, a significant
intensity of a forced f low in the crystallization chamber is required.

Three-dimensional and time-dependent calculations of turbulent f lows have been carried out in [20],
which taking into an account of the conditions of a high-rate KDP crystal growth. These calculations have
been showed that the f low dynamics and a supersaturation distribution strongly depend on the crystal size,
the growth rate, and the crystal rotation rate. The “self-consistent” model for KDP crystal growth was
proposed in [21], in which both the bulk diffusion and the reaction on a crystal growth surface were taken
into an account for a determination of the diffusion layer thickness around a crystal.

The mathematical model of crystal growth must be considered in a conjugate formulation with taking
into an account of a mass transfer in “solution-crystal” system. It is necessary to establish the local fea-
tures of hydrodynamics and mass transfer in a solution near a growing crystal, which may affect to a local
(for a particular place and direction) crystal growth rate and a defect formation. Unfortunately, at the
present time the number and variety of different devices for providing “needful” solution hydrodynamics
significantly exceeds the number of studies of hydrodynamics and mass transfer in such devices.

In this paper, a mathematical model of f low and mass transfer is proposed to describe the process of
salt crystallization from a solution. Its approbation was considered for the problem of crystallization on a
streamlined horizontal plate. The calculation model analyzes the solution hydrodynamics in crystallizers
intended for KDP crystal growth. The features of hydrodynamics and mass transfer on a crystal surface
are revealed with taking into an account of technological conditions [2] and the criteria for ensuring two-
dimensional nucleation [1]. For mathematical modeling the software [22] was used.

2. MATHEMATICAL MODEL OF FLOW AND MASS TRANSFER
FOR CRYSTAL GROWTH FROM SOLUTION

The flow and mass transfer are studied within the framework of continuous medium modeling, which
is considered as a water-salt solution of KDP. This salt dissolves in water to a saturation level at a high tem-
perature. Then, such a supersaturated solution is used in crystal growth at lower temperatures in static
crystallizers (without inflow and outflow) and in continuous-flow crystallizers.

In the static crystallizers, the salt-saturated solution is cooled, creating conditions of salt precipitation
(crystallization) on seed crystal, and in the continuous-flow crystallizers a solution is continuously
pumped at given temperature and corresponding supersaturation level. One of the variants of the contin-
uous-flow axisymmetric crystallizer is shown in Fig. 1. It is characterized by axial inflow and outflow of
solution in the directions indicated by arrows.
MECHANICS OF SOLIDS  Vol. 57  No. 4  2022
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Fig.1. Scheme of the crystallizer with axial inflow and outflow of solution: (1) – growing crystal, (2) – crystallizer body,
(3, 4) – holes for inflow and outflow of solution in the directions shown by arrows.
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The working temperature of KDP solution in the crystallizer was maintained at 32°C, and the salt sat-
uration was made at a higher temperature (69°C) to a concentration Сo = 1.59503 × 1021 molecules per
1 cm3 of solution.

For the operating temperature T = 32°C an equilibrium salt concentration is Сe = 9.98578 × 1020 mol-
ecules per 1 cm3 of solution. It is possible an estimation of the supersaturation at T = 32° by means of the
following formula:

(2.1)
and its value in a particular case is 0.47.

From the point of view of mass transfer, the salt precipitation occurs in a solution volume, on a seed
crystal and walls of crystallizer. The presence of crystalline nuclei in solution causes their volumetric
expansion according to thermodynamic laws, which can be considered in conjunction with the model of
a f luid continuous medium.

To determine the velocity vector V = (Vx, Vy) and the pressure P in the solution, the Navier-Stokes
equations for an incompressible f luid are solved. They are written in vector form as follows:

(2.2)

and together with (2.2) the equation of convective salt transfer is solved:

(2.3)

The salt concentration C is normalized to the inflowing Co value and further it is considered in dimen-
sionless form. Here: t is the time, ρ⎯solution density, ν⎯kinematic viscosity, and D⎯salt diffusion coef-
ficient.

At the inflow boundary: the f low rate and salt concentration are set: V = Vo, C = 1. At the outflow
boundary: the normal gradient of velocity and salt f lux are equal to 0. And “non-slip” condition and the
absence of salt f lux are set on crystallizer walls.

=σ ln( / )o eC C

( )∂ ∂ + ∇ = − ρ∇ + =/ 1/ νΔ , div 0t PV V V V V

( )∂ ∂ + ∇ =/ Δ .C t C D CV
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Table 1. Parameters for calculating the crystallization rate of a facet

Parameter Value

w⎯volume of the molecule, cm3 9.68 × 10–23

k⎯Boltzmann constant, erg/K 1.38 × 10–16

β⎯kinetic coefficient, cm/s (32°C) 0.00955

α⎯specific energy of the step for the face (100), erg/cm2 19.5

h⎯height of the step on the facet (100), cm 7 × 10–8

D⎯coefficient of salt diffusion, cm2/s (32°С) 7.5 × 10–6

η = ν × ρ⎯dynamic viscosity of solution, g/cm s (32°С) 1.5 × 10–2
On crystallization front (crystal surface): the condition of “non-slip” on the f low and the condition of
“mass f lux” at rate R are applied:

(2.4)

Here, in the balance of salt f luxes a diffusion flux with a coefficient D and a convective f lux are taken into
an account. They include a solution salt transfer and a f lux into crystal with a normal velocity R.

In the boundary condition for a salt concentration (2.4) we use the parameter ko, which is given for the
solution-crystal surface by the ratio of the solidifying concentration – Csolid to the influx salt concentration
from the solution volume – Cliquid: ko = Csolid/C. May be note an analogue with a crystallization from a
melt, where ko is used as the equilibrium impurity distribution coefficient in the “crystal-melt” system
[23].

In both cases, ko is a certain phenomenological parameter, which quantitatively characterizes the
impurity (salt) f lows in a macromodel of the convective mass transfer during crystallization (from a melt
or solution). However, if for a melt crystallization the parameter ko is widely used in technological practice
and experimentally measured for a large number of materials and impurities, then for the crystallization
from the solution there are no approved approaches to its assignment.

In this paper, this parameter was used as the ratio of an equilibrium concentration Ce to a solution con-
centration at the end of concentration boundary layer Cδ, which for the given f low geometry was equal to
inflowing concentration Co, then ko = Ce/Co. Taking into an account of formula (1), this analogue has the
equivalent notation: ko = e–σ, where ko ≤ 1.

It can be noted that in the limiting case, when there is no supersaturation of the solution with salt (for
σ → 0), there is no mass exchange of a solution with a crystal surface. Preliminary calculations were made
to evaluate an applicability of formula (4), when the supersaturation was too high (at σ → 0.75). At a low
inflow rate (5 cm/s), a salt precipitation occurred intensively only near the solution inflow boundary.
Then the solution concentration quickly became less than equilibrium and it meant that there was absent
further crystallization downstream.

The parameter R, which in the theory of mass transfer means the rate of precipitation of a salt on a cer-
tain surface, in this case plays a key role in conjugating the hydrodynamic macro model with a micromodel
describing the process of crystal growth. The parameter R is given in the form of a thermodynamic relation
that takes into an account of a solution saturation level σ at a given temperature T and the parameters cor-
responding to the growth of the specific crystal face: β is the kinetic coefficient of the step, w is the volume
of the particle in the crystal, h is the height of the elementary step, α is the specific surface energy of the
step; here k is the Boltzmann constant. This relation is written in the form of the following formula [2]:

(2.5)

In this formulation, the specificity of the material is taken into an account of the equilibrium Ce con-
centration for the parameter ko and in the parameters for R entering into for which the meanings and val-
ues are given in Table 1.

Analogously to [18, 20, 24], the crystallization rate R is given by a constant value for the given param-
eters from the Table and the supersaturation value σ = ln(Co/Ce), and the mass transfer process is taken
into an account in the boundary condition (2.4). Such model is useful for estimating the influence of

∂ ∂ = −0/ ( 1).D C n RC k

= − α5/6 2 2 2βσ exp( π /2 σ).R w h k T
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Fig. 2. The hydrodynamic boundary layer near horizontal plate at an initial velocity of the inflow Vxo = 5 cm/s: velocity
isolines and vertical scale of Vx on initial plate part x ≤ 1 cm.
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hydrodynamic parameters on mass-exchange processes on the crystal surface. Its application will be con-
sidered in a simplified example below.

3. APPROBATION OF THE CONJUGATED MODEL
ON THE FLOW AROUND A LONG HORIZONTAL FACET

We suppose that the creation of a homogeneous salt f lux from a solution to a crystal is the necessary
condition for KDP crystal growth by a way of two-dimensional mechanism of nucleation [2]. Such homo-
geneous salt f lux takes place for the f low around a long horizontal plate (crystalline facet ~10 cm). More-
over, for an infinite plate there is corresponding analytical solution [25]. Therefore, this vortex less f low
was chosen for approbation of the mathematical model described above.

The problem is solved numerically in a two-dimensional region, which is long in x and narrow in y
direction: 0 ≤ x ≤ 10 cm, 0 ≤ y ≤ 0.5 cm. The salt solution inflows parallelly to this plate through the cross-
section x = 0 at the velocity Vx. The deceleration of this f low along the plate causes a change of the velocity
profile, which corresponds to thickening of the hydrodynamic boundary layer in picture of isolines Vx
(Fig. 2).

A flow deceleration along the plate causes a vertical salt f lux inhomogeneity near a plate surface, which
increases with a removal from the inflow cross-section. This may be seen from a comparison of the vertical
profiles C(y) concentration shown in Fig.3: for the beginning (x = 1 cm) and the end of the plate (x = 9 cm).
Their comparison shows that at a supersaturation σ = 0.47, the salt concentration C on the plate surface
decreases from 0.87 to 0.73. The result of this decrease should be as slowing down of crystalline facet
growth at removal from inflow cross-section. The calculated profiles correspond to analytical estimates of
the diffusion layer thickness δ = 500 μ at inflow rate Vxo = 5 cm/s [25].

An applicability of proposed mass transfer model was investigated by analyzing the results of paramet-
ric modeling, which were obtained at various supersaturations σ = 0.1 ÷ 0.7 and at two rates: Vxo = 5 and
30 cm/s (Fig. 4), and at different rates Vxo = 5 ÷ 30 cm/s and one supersaturation σ = 0.47 (Fig. 5).
In Fig.4 the equilibrium dimensionless concentration Сe = 0.626 at T = 32°С is indicated by the dash line.

An analysis of Fig.4 shows that at low supersaturations (σ = 0.1÷0.3) the salt concentration varies
slightly along plate length (see Cx = 9 cm = 1÷0.95), but at large supersaturations (σ = 0.4÷0.7) the signifi-
cant concentration decrease toward a plate end is observed.

In the experiment mentioned at the beginning of this section, the working supersaturation was σ =
0.47, which corresponds to Cx = 9 cm = 0.73 or in the dimensional form is 11.64372 × 1020 molecules per
1 cm3 of solution. This exceeds the equilibrium value Сe = 9.98578 × 1020 at T = 32°C. In this case at such
conditions a long facet may be grown.

However, for large supersaturations the insufficiently high inflow velocity (Vxo = 5 cm/s) leads to a sig-
nificant concentration salt decrease at plate end to the values below an equilibrium level (see Fig. 4). This
indicates that such long facet cannot grow under these conditions.

A possible way out of this situation may be an increase of solution rate Vxo. This conclusion follows
from an analysis of graphs in Fig. 5. It may be seen that an increase Vxo from 5 to 30 cm/s substantially
equalizes a concentration distribution along a plate length and significantly increases its values at plate
end.
MECHANICS OF SOLIDS  Vol. 57  No. 4  2022
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Fig. 3. The vertical distribution of salt concentration C(y) for supersaturation σ = 0.47: at beginning (x = 1 cm)⎯dash
line and at end of the plate (x = 9 cm)⎯solid one.
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Fig. 4. The dependences of salt concentration Cx = 9 cm at plate end (x = 9 cm) upon a supersaturation σ at two inflow
rates Vxо (5 cm/s⎯solid line, 30 cm/s⎯dash line).
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Thus, even for such vortex less f low around a sufficiently long facet, a coordinated optimization of a
salt saturation and an inflow solution rate is required.

4. THE FLOW FEATURES IN CRYSTALLIZERS
WITH AXIAL AND RING INFLOW OF A SOLUTION

In contradistinction to standard designs for crystal growth from a melt (for method of Czochralski [26]
etc.) the various crystallizer designs are applicated for crystal growth from water-salt solutions, in which,
according to the designers, the necessary crystal growth conditions are supported by means of best its
f low-around (by velocity value and direction of f low, saline saturation solution and its temperature).
In this article the hydromechanical problems are considered for continuous-flowing axisymmetric crys-
tallizers.
MECHANICS OF SOLIDS  Vol. 57  No. 4  2022
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Fig. 5. The dependence of salt concentration Cx = 9 cm at plate end (x = 9 cm) upon a f low velocity Vxo at σ = 0.47.
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The cases of axial and ring inflow of a solution are considered for which the crystal had a cylindrical
shape with the following dimensions: the height of the conical part is 5 cm, the cylindrical part is 15 cm,
and the diameter is 10 cm. Axisymmetric f lows are realized for such crystallizers.

During an axial inflow of a solution and a static crystal, a lateral vortex f lowing around a conical crystal
part and a smaller vortex near its cylindrical part are formed (Fig. 6a). A formation of this small vortex, as
well as a vortex under a crystal bottom, is explained by ledges in a crystal shape. These ledges create stag-
nant f low zones in which the conditions of convective mass transfer near crystal surface are different from
the conditions on remained surface.

A crystal rotation leads to well-known hydrodynamic structure between two cylinders, characterized
by a formation of a vortices chain along a cylindrical surface. This affects to an inhomogeneity of a salt
transfer to the crystal surface from a solution volume (Fig. 6b).

For the case of solution inflow through top ring hole a non-vortex f low of a solution around a lateral
crystal surface occurs (Fig. 7). This f low forms uniform conditions of salt precipitation on a crystal sur-
face. Moreover, under a crystal bottom the vortices are formed due a crystal rotation, which contributes
to a bottom flow uniformity. In general, this variant most fully corresponds to the plane-parallel f low and
its realization could provide the required uniformity of salt f luxes on a crystal surface.

5. CONCLUSIONS
In this paper, it is considered that for KDP crystal growth by the two-dimensional mechanism of

nucleation is the maintenance of a vortex less f low around a crystal surface. This forms a uniform salt f lux
from solution volume to the crystallization surface.

The rate of salt precipitation is estimated by the proposed mathematical model based on solving
Navier-Stokes and salt transfer equations for incompressible f luid, which are conjugated with the thermo-
dynamic model for a crystal growth according to two-dimensional nucleation.

The application of this conjugation to the problem of plane-parallel f low around a long plate have
showed its satisfactory agreement with both theoretical estimates [25], and experimental values of crystal
growth rates [2]. However, even for such vortex less f low around a sufficiently long facet, a coordinated
optimization of a salt saturation and an inflow solution rate is required.

The various crystallizer designs are applicated for crystal growth from water-salt solutions, in which the
necessary crystal growth conditions are supported by means of best its f low-around (by velocity value and
direction of f low, saline saturation solution and its temperature). The action of continuous-flow crystal-
lizers was analyzed for various solution inflow (the top axial and ring inflow) and outflow through the
axial bottom hole. It may be note that the ring solution inflow may ensure the vortex less f low around a
crystal surface. In the case of ring inflow, the plane-parallel f low around the lateral crystal surface forms
a uniform salt f lux into its surface. In the case of axial inflow, the vortex f lows appear in the solution vol-
ume, which is non-acceptable for realization of the mechanism of two-dimensional nucleation.
MECHANICS OF SOLIDS  Vol. 57  No. 4  2022
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Fig. 6. The axial solution inflow into the crystallizer at rate 6 cm/s: a solution flow structure without rotating crystal (a)
and with its rotation at angular rate 1 rad/s (b).

(a) (b)

Fig. 7. The ring solution inflow into the crystallizer at the rate 6 cm/s: a solution f low structure with rotating crystal at
angular rate 5 rad/s.
In comparison with the plane-parallel f low around a horizontal plate, considered in Section 3, the
flows in real crystallizers are more complicated. For such problems, also possible application of conju-
gated mathematical model proposed in Section 2, although the corresponding calculations and analysis
of their results will require much more necessary labor.
MECHANICS OF SOLIDS  Vol. 57  No. 4  2022
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