Трехщелевая сверхпроводимость LiFeAs: прямое экспериментальное наблюдение методом спектроскопии многократных андреевских отражений

Т. Е. Кузьмичева^{1,*}, С. А. Кузьмичев^{2,1,}°, И. В. Морозов³, А. И. Болталин³, А. И. Шилов^{3,1}

¹ Физический институт им. П.Н. Лебедева РАН, Ленинский пр-т, 53, Москва, 119991.

² Физический факультет, Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991.

³ Химический факультет, Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991.

*kuzmichevate@lebedev.ru, °kuzmichev@mig.phys.msu.ru

С помощью спектроскопии эффекта многократных андреевских отражений исследована структура сверхпроводящего параметра порядка железосодержащих пниктидов LiFeAs с критической температурой T_c ≈ 15.0-17.5 К. Ниже T_c обнаружены как минимум три объемных сверхпроводящих параметра порядка, напрямую определены их величины, характеристические отношения и температурные зависимости, оценена степень анизотропии. Обсуждается возможность присутствия пика плотности электронных состояний вблизи уровня Ферми.

Введение

Сверхпроводящие пниктиды LiFeAs относятся к структурному типу 111 на основе щелочных металлов. LiFeAs обладает умеренной критической температурой до $T_c \approx 17-18$ К в стехиометрическом составе и демонстрирует ряд уникальных свойств (в качестве обзора см. [1]). При дефиците Li или его замещении переходными металлами сверхпроводимость LiFeAs разрушается. На поверхности Ферми сосуществуют два концентрических дырочных цилиндра в Г-точке зоны Бриллюэна и электронные цилиндры в М-точке [1,2]. В отличие от большинства пниктидов, стехиометрический LiFeAs немагнитен, а нестинг поверхностей Ферми отсутствует.

Из-за наличия активного щелочного металла сверхпроводящие свойства LiFeAs быстро деградируют в присутствии даже следовых количеств воды, кислорода и азота. Сложность работы с LiFeAs обусловливает крайне малое количество экспериментальных данных о свойствах этого соединения, опубликованных в мире на данный момент.

Детали эксперимента

В наших исследованиях использовались монокристаллы LiFeAs, синтезированные методом «раствор в расплаве» [3]. Подготовка и монтаж образцов проводились в перчаточном боксе в атмосфере сухого аргона для предотвращения деградации сверхпроводящих свойств LiFeAs. Для прямого определения сверхпроводящих энергетических параметров использовался метод спектроскопии эффекта многократных андреевских отражений (incoherent multiple Andreev reflection effect, IMARE) в контактах сверхпроводник - тонкий нормальный металл - сверхпроводник (SnS) с некогерентным транспортом. В контактах с высокой прозрачностью NS-границ (> 80 %) IMARE проявляется в виде избыточного тока во всем диапазоне смещений, а также минимумов динамической проводимости dI(V)/dV на смещениях $eV_n(T) = 2\Delta(T)/n$, где Δ – величина сверхпроводящего параметра порядка, n = 1, 2,... [4,5]. В случае анизотропной сверхпроводящей щели (расширенный s-тип симожидаются дублетные метрии) минимумы dI(V)/dV, положения которых соответствуют экстремумам $\Delta(\theta)$ – максимальной и минимальной энергии связи куперовских пар в данной зоне в зависимости от угла θ в k-пространстве [6]. Планарные SnS-контакты создавались при 4.2 К с помощью техники «break-junction». Данный метод позволяет локально и напрямую определять величины и температурные зависимости объемных сверхпроводящих параметров порядка. Преимущества и недостатки методики, детали эксперимента подробно описаны в обзоре [6].

Результаты и выводы

Проведены исследования более 100 SnS-контактов в монокристаллах LiFeAs из одной закладки [1,7].

В нормальном состоянии вплоть до T ~ 80-100 К I(V) и dI(V)/dV получаемых контактов воспроизводимо демонстрировали сильную нелинейность, вызванную объемными свойствами и не связанную напрямую со сверхпроводимостью. Данная нелинейность может быть следствием пика плотности электронных состояний вблизи уровня Ферми в LiFeAs.

Рисунок 1. Гистограммы величин сверхпроводящих энергетических параметров при T << T_c по данным исследования SnS-контактов в различных монокристаллах LiFeAs. Интенсивность цвета соответствует вероятности наблюдения величин $\Delta(0)$ и $2\Delta(0)/k_{\rm B}T_{\rm c}$

На I(V)-характеристиках ниже T_c наблюдался избыточный андреевский ток и отсутствовала сверхтоковая ветвь, что говорит о реализации IMARE [4,5]. Андреевские структуры на dI(V)/dV-спектрах соответствуют как минимум трем сверхпроводящим параметрам порядка. Для большой Δ_{Γ} и средней Д сверхпроводящих щелей воспроизводимо наблюдались дублетные dI(V)/dV-минимумы, предположительно связанные с анизотропией Δ_{Γ} и Δ_L в ху-плоскости импульсного пространства. Напрямую определенные при Т << Т_с экстремумы анизотропных сверхпроводящих щелей в среднем составляют $\Delta_{\Gamma}^{\text{out}} \approx 5.8$ мэВ и $\Delta_{\Gamma}^{\text{in}} \approx 5.0$ мэВ ($\approx 14 \%$ анизотропия), $\Delta_L^{out} \approx 3.2$ мэВ и $\Delta_L^{out} \approx 2.2$ мэВ (\approx 32 % анизотропия). Для малой сверхпроводящей щели $\Delta_{\rm S} \approx 1.2$ мэВ признаков анизотропии не наблюдалось. По данным ARPES [2], большая щель открывается на внутреннем цилиндре поверхности Ферми в Г-точке, средняя щель – в электронных зонах, а малая – на внешнем Г-цилиндре.

Разброс значений $\Delta(0)$, наблюдаемый на верхней панели рис. 1, вызван разбросом локальных $T_c \approx$

15.0–17.5 К исследованных SnS-контактов, что может быть связано с локальным дефицитом Li_{1-δ} в контактной области. В то же время, разброс характеристических отношений $2\Delta(0)/k_BT_c$ (нижняя панель рис. 1) значительно меньше, что говорит о скейлинге $\Delta_i(0)$ и T_c в исследованном диапазоне T_c .

Рисунок 2. Температурные зависимости сверхпроводящих энергетических параметров в LiFeAs. Соединенными символами показаны энергетические параметры, предположительно являющиеся экстремумами анизотропных сверхпроводящих щелей Δ_{Γ} и Δ_{L} . На вставке приведены температурные зависимости анизотропии большой и средней сверхпроводящей щели.

Измеренные напрямую температурные зависимости сверхпроводящих щелей (рис. 2) лежат ниже однозонных БКШ-образных функций и типичны для случая умеренного межзонного взаимодействия. Степени анизотропии Δ_L и Δ_{Γ} остаются примерно постоянными вплоть до T_c .

Литература

- 1. T.E. Kuzmicheva, S.A. Kuzmichev, JETP Lett. 114, 630 (2021).
- 2. S.V. Borisenko, et al., Symmetry 4, 251 (2012).
- 3. I. Morozov, et al., Cryst. Growth&Des. 10, 4428 (2010).
- 4. M. Octavio, et al., Phys. Rev. B 27, 6739 (1983).
- 5. R. Kümmel, et al., Phys. Rev. B 42, 3992 (1990).
- S.A. Kuzmichev, T.E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016).
- 7. T.E. Kuzmicheva, et al., JETP Lett. 111, 35 (2020).