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The dependence of the volume of the chaotic component in the internal dynamics of triatomic van
der Waals clusters on the angular momentum is calculated using the Monte Carlo and molecular
dynamics methods. It has been found that this dependence is nonmonotonic and that its functional
form varies for different values of the total energy. The effective number of rotational modes was
used to clarify why a change in the volume of chaotic component of the phase space happens for
certain values of the angular momentum. We conclude that a large fraction of regular trajectories in
relation to all trajectories appears only when there is a possibility for the regular motion to perform
a rotation different from that for a chaotic motion. When such difference is small, the regular motion
disappears. The effective number of rotational modes can be used to estimate the difference in the
type of rotation and is a convenient parameter which controls changes in the dynamics of the
system. © 2010 American Institute of Physics. �doi:10.1063/1.3496375�

I. INTRODUCTION

Investigations of the internal dynamics of atomic and
molecular clusters are important in various areas of science,
particularly, in physical chemistry, molecular biology, the
theory of phase transitions in finite-size systems, and the
theory of nonlinear dynamical systems. The study of the
movement of particles in clusters leads to an understanding
of the mechanisms of isomerization and fragmentation, thus
revealing their dynamic features.

The analysis of the internal dynamics in weakly bound
clusters is complicated. First, strong anharmonicity of inter-
action among atoms in a cluster makes the normal mode
method inapplicable to describe their internal dynamics.1

Second, rovibrational interaction cannot be considered as a
small interaction. It makes ineffective a traditional approach
with models such as “rigid rotator-harmonic oscillator,”
when intramolecular vibrations are separated from rotation,
and vibration-rotation interaction is taken into account using
perturbation theory.2 Interaction of vibration and rotation in
weakly bound clusters is important but so far poorly
studied.3,4 This interaction influences the redistribution of en-
ergy among internal degrees of freedom and, consequently,
the rate constant of isomerization and monomolecular frag-
mentation. Third, the high-dimensional nature of the dynam-
ics is often a substantial obstacle to clarifying the exact
mechanisms of collective motions of particles in the clusters.
In order to carry out the reduction of dimensionality effec-
tively, it is crucial to identify a small number of collective
variables that play a predominant role in the structural dy-
namics of clusters.5 Finally, the phase space has areas of
chaotic and regular behavior,6–9 but the knowledge of the
total energy and angular momentum is not sufficient to de-
termine the type of motion. The set of parameters which

determine regular or chaotic state of motion are currently
unknown, although there are several hypotheses as described
below.

There is an argument that the chaotic dynamics in rotat-
ing weakly coupled atomic and molecular clusters is a con-
sequence of the concentration of kinetic energy in vibrational
degrees of freedom;10–13 that is, the more energy stored in
vibrations, the more chaotic the dynamics becomes. At the
same time, we found earlier that in triatomic argon clusters
the amounts of kinetic energy in vibrational degrees of free-
dom are similar for regular and chaotic components.14 This is
typical for all values of angular momentum which have been
studied. This fact allows us to assume that the concentration
of kinetic energy in vibrational degrees of freedom is not a
necessary and sufficient condition for a chaotic regime. As a
result the question about parameters which control transition
to chaos in such systems is left open.

In this paper we analyze the dependence of the volume
of the chaotic component of phase space on the angular mo-
mentum in the internal dynamics of triatomic van der Waals
clusters, calculated using the Monte Carlo and molecular dy-
namics methods. Earlier we explored the internal dynamics
for a particular value of the total energy by the method of
effective modes.14,15 In the present paper we consider the
dynamics for different values of the total energy and reveal
that it varies significantly. The search for an explanation of
this effect allows us to make more accurate conclusions
about the origin of the chaotic regime.

The structure of the paper is as follows: Sec. II A pre-
sents a brief description of the method of effective modes.
Section II B shows how nonrigid rotation can be analyzed in
the framework of effective modes and effective numbers of
modes. Section III presents the dynamics of weakly bound
cluster on an example of triatomic Ar3 cluster dynamics, and
Sec. IV gives a summary of the work.a�Electronic mail: rybakovy@mail.ru.

THE JOURNAL OF CHEMICAL PHYSICS 133, 144101 �2010�

0021-9606/2010/133�14�/144101/6/$30.00 © 2010 American Institute of Physics133, 144101-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3496375
http://dx.doi.org/10.1063/1.3496375
http://dx.doi.org/10.1063/1.3496375


II. METHODS

A. Method of effective modes

The method of effective modes allows one to simplify
the analysis of the internal dynamics of nonlinear systems in
multidimensional phase space and to allocate parameters that
control changes in the dynamics. It is based on the expansion
of collective motion of atoms in a cluster in the orthogonal
components with extreme properties which we will call the
effective modes.

Consider the dynamics of an N-particle cluster. Using
the numerical integration of Hamilton’s equations of motion,
the momentum vectors p� i�tj� can be calculated at discreet
time moments t1 , . . . tNT

� �0,T�; NT is the number of integra-
tion steps. Then the trajectory of an N-particle system in the
momentum subspace can be specified by an n�NT matrix
p̂ij, where each n-dimensional vector p j consists of the Car-
tesian coordinates of the momentum vectors of all particles
p� i�tj�, i=1,n, j=1,NT, n=3N, and NT�n.

At each moment of time we represent the n-dimensional
momentum of the cluster of N particles as a superposition of
effective modes15

p j = �
k=1

n

�p�tj�,ek�ek, �1�

where �p̂p̂��ek=�k
2ek and ek

�e j =�kj. Each �k, �1��2� . . .
��n�0 measures the amount of the time-averaged kinetic
energy per mass unit captured by the respective mode

�k = �2 · �Ekin	k. �2�

Here the 3N-dimensional eigenvectors ek represent the direc-
tions and relative amplitudes of the particle motions which
compose the kth mode, �ek�i represents the subcomponent,
corresponding to the ith particle. The product �p�tj� ,ek� is the
projection of the combined momentum of all particles p j on
the kth mode or the amplitude of the kth mode at the moment
tj.

Since the basis ek is orthonormal �1�, the kinetic energy
per mass unit �Ekin�k captured by the kth mode can be calcu-
lated as follows

�Ekin�k�t� =
1

2�
i=1

N

�p�t�,�ek�i�2. �3�

The representation of the motion with the first m modes
gives the error for the time-averaged kinetic energy per unit
mass

�m�Ekin	 =
1

2 �
k=m+1

n

�k
2. �4�

The choice of effective modes in the form �1� guarantees that
any given number of the effective modes captures on the
average more energy than the same number of any other
modes obtained by linear expansion using an orthogonal
basis.16

The method of effective modes is inspired by the method
of bi-orthogonal decomposition, described by Lima,17 and by
the method of Karhunen–Loève decomposition described,

for example, by several authors.16,18 The method of effective
modes is adapted for the analysis of nonlinear dynamics in-
cluding nonrigid rotations. For many-particle systems in
which interparticle interaction is described by a quadratic
potential, the effective modes are equivalent to the normal
modes.19 Effective and normal modes have much in com-
mon: in both cases an orthogonal decomposition is used and
the modes are independent. The difference between them is
that the expansion in normal modes requires the linearization
of equations of motion and the separation of vibrations from
rotations.

Normal modes calculated for nonlinear systems lose the
pairwise independence. Apart from our method of effective
modes, there are several other modifications of the method of
normal modes for the analysis of nonlinear systems. One of
them is a normal mode analysis for the sequence of points
along the reaction path.20 In this method the normal modes
are introduced as the oscillations which are orthogonal to the
reaction coordinate. The resulting modes change along the
reaction path and cannot be treated as independent, while the
degree of loss of pairwise independence can be determined
using the coefficients of interaction among the modes.21 The
coupling coefficients determine how one mode transforms
into another during the motion along the trajectory. For a
trajectory in which one mode is independent from the others,
all corresponding coupling coefficients approach zero.

Another way to describe nonlinear dynamics is to intro-
duce the instantaneous normal modes without the assumption
that the system is close to the equilibrium configuration.22

These modes result from the Taylor expansion of the poten-
tial of interaction up to quadratic terms in each point of the
trajectory. The positive eigenvalues of the Hessian give vi-
brational modes and the negative ones are consistent with
imaginary frequencies and instability of the motion with an
inverted interaction potential.23 Consequently, the presence
of imaginary frequencies in the spectrum will indicate the
passage over the barrier, with the proportion of such modes
being interpreted as a measure of quasiliquid behavior.24 The
term “instant” is chosen to emphasize that the set of modes is
different at each point of the trajectory.

All these other methods differ from the method of nor-
mal modes in that they use modes which are not pairwise
independent. At the same time the linearity of transition to
new coordinates is preserved. In contrast, in the method of
effective modes, we choose another approach: we use the
linear decomposition and allocate independent types of mo-
tion. For normal modes the predetermined basis is used, and
time dependencies of amplitudes are harmonic functions.
The expansion in effective modes sets the algorithm for find-
ing a basis. This basis, in general, depends on the form of
trajectory and the time dependencies of amplitudes of effec-
tive modes can be anharmonic. A more detailed description
of the method of effective modes can be found in our earlier
studies.14,15

B. Nonrigid rotation and effective modes

For the nonrigid systems, the motion in each effective
mode consists of rotations and vibrations. In our previous
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work14 we have shown that it is possible to separate the
energy of the overall rotation from that of the vibrational
motion in each mode using the method proposed by Jellinek
and Li.25 For a system of N particles, labeled with i, at any
instant moment the rotational energy per mass unit captured
by the kth mode can be presented as follows

�Erot�k�t� =
1

2
· �p�t� · ek� · 
�

i=1

N

q� i�t� � �ek�i� · �� �t� , �5�

where the vector q� i is the position of the ith particle, and the
vector �� �t� is the instantaneous angular velocity.

In the general case of free rotation of a rigid body, both
the vector of angular velocity and the instantaneous axis of
rotation continuously change their direction in space. Even
for the inertial rotation in the absence of external torques,
behavior of the instantaneous axis of rotation seems to be
complicated. Within a framework of effective modes, rigid
body rotation around one of its principal axes of inertia is
represented by a pair of coupled modes with the same aver-
age kinetic energy and periodic sinusoidal energy exchange
between them.18 In the general case free rotation of a rigid
body can be presented as a superposition of three indepen-
dent rotations around stationary axes with a pair of coupled
modes per each axis. Effective modes of nonrigid systems
contain both rotations and vibrations, but modes in pairs still
have similar values of the average rotational energy. The
pairs of coupled modes can be used for conducting a com-
parative analysis of rigid and nonrigid rotation, as we have
done earlier.14

As noted by Aquilanti et al.,26 it is very important to be
able to characterize the aggregate structure and the dynamics
of a system by focusing on a few key quantities. In this paper
we use the effective numbers of rotational modes as a param-
eter which give information about redistribution of the inter-
nal energy among different types of the collective move-
ments of the particles. This parameter allows us to determine
the number of axes of rotation and to compare the cluster’s
rotation with that of a rigid rotator.

We define the effective number of rotational modes neff
rot

as follows

neff
rot = 10−�k��Erot

red�k	·log��Erot
red�k	, �6�

where ��Erot
red�k	 is the time averaged value of rotational en-

ergy in the kth mode �Eq. �5��, divided by the time averaged
value of the total rotational energy. The effective numbers of
rotational modes represent the degree of equipartition of the
rotational energy among the modes. The effective number of
rotational modes can take values from two �when only one
pair of modes is excited, and rotation is similar to the prin-
cipal rotation of a rigid rotator around a fixed axis� to six
�when the rotational energy is equidistributed among all
modes�.

Other types of effective numbers of modes, as well as
their quantum-mechanical analogies, are given in our earlier
work.14

III. DYNAMICS OF A TRIATOMIC CLUSTER

A cluster consisting of three identical rare gas atoms can
be considered as a bound state of the system defined by the
Hamiltonian

H = �
i=1

3
pi

2

2m
+ �

i	j

3

U�rij� . �7�

Here, rij = �q� i−q� j� is the distance between the atoms, q� i

and p� i are the position vector and the momentum vector of
the ith atom, m is its mass, and U�rij� is the Lennard-Jones
potential

U�rij� = 4U0

 


rij
�12

− 
 


rij
�6� , �8�

where U0 is the diatomic well depth and 
 is its characteris-
tic width �at the zero level�. The parameters m, U0, and 
 are
dimensionless with �m ·
2 ·U0

−1�1/2 as the unit of time. The
ground state of the cluster with the total energy Etot=−3 and
zero angular momentum corresponds to the structure with
the atoms located at the vertices of the equilateral triangle
with side 
�=�6 2. If the total energy of the cluster is more
than the energy of the saddle point �for the linear configura-
tion Elin=−2.03�, the reaction of isomerization between two
isomers is energetically possible. The dissociation threshold
for the triatomic cluster is �1.0. Motion of the system in the
state with a fixed energy and the maximum �for this energy�
angular momentum Mmax can be described as rotation around
the center of symmetry of the equilateral triangle situated in
the plane perpendicular to the vector of the angular momen-
tum. In this paper the angular momentum M is normalized
with respect to the maximum angular momentum Mmax for a
given energy.

We used the molecular dynamics method to study the
phase space structure of the rotating Ar3 cluster as a function
of two parameters, namely, the total energy Etot and the total
angular momentum M.27 A microcanonical ensemble of ini-
tial conditions was formed by straightforward sampling from
points distributed randomly and uniformly in the phase space
in such a way that the potential energy was U�Etot and the
kinetic energy was Ekin=Etot−U. We used the random num-
ber generator proposed by Matsumoto and Nishimura.28 Fur-
ther, the points were selected from the angular momentum
shell of finite thickness �M =0.001. The Hamilton equations
of motion were numerically integrated using the velocity ver-
sion of the Verlet algorithm29 with the time step ts=10−2 on
the time interval 
=2.5�103 time units. Using the values of
m�40Ar�=39.945 amu, U0=99.55 cm−1, and 

=3.757 /21/6 Å, the time unit is �m ·
2 ·U0

−1�1/2=1.94 ps, the
time step is ts=19.4 fs, and the time interval is 
=4.85 ns.
The absolute drift in the numerical values of Etot and M on
the interval 
 did not exceed 10−5 and 10−7, respectively.

To determine the type of dynamics �regular or chaotic�,
the maximum Lyapunov exponent has been calculated using
the scheme of Benettin et al.30 To calculate the average vol-
ume of the chaotic component of the phase space for each
value of the angular momentum, the maximum Lyapunov
exponent was computed for 1000 trajectories. From 11 000
to 19 000 trajectories were evaluated for a given energy. For

144101-3 Effective numbers of modes J. Chem. Phys. 133, 144101 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



each trajectory the effective modes were extracted
�Sec. II A�, the rotational energies in each mode were calcu-
lated and the effective number of rotational modes was com-
puted �Sec. II B�.

The internal dynamics of the cluster was studied for
three different values of the total energy related to the two
different regions of the potential energy surface. For the total
energy Etot=−2.3 only triangular configurations of the cluster
can be realized. For the total energies Etot=−1.9 and Etot=
−1.5 both triangular and linear configurations of the cluster
can be reached. In Fig. 1 the dependencies of the fraction of
chaotic trajectories in relation to all calculated trajectories on
the angular momentum value are shown for the energies
Etot=−1.9 and Etot=−2.3. The error � is calculated in the
usual form for the Monte-Carlo method

� =
�fch · �100 − fch�

�Ntot

, �9�

where fch is the fraction of chaotic trajectories in relation to
all calculated trajectories expressed in percentage �fch

=100·Nch /Ntot�, Ntot is the total number of trajectories, Nch is
the number of chaotic trajectories. These dependencies are
nonmonotonic. When M belongs to the interval from 0.2 to
0.6 only a few regular trajectories are observed. The fraction
of regular trajectories in relation to all trajectories starts to
increase quickly when the total angular momentum reaches a
certain value which depends on the value of the total energy.
Another functional form of the dependence of the fraction of
chaotic trajectories in relation to all trajectories on the angu-
lar momentum has been found for the total energy
Etot=−1.5 �Fig. 2�. For this energy a noticeable increase of
the volume of the chaotic component occurs when M reaches
the value of 0.78 �approximately�. Below we shall try to
explain the results by means of effective numbers of rota-
tional modes.

Figure 3 shows the dependence of the effective number
of rotational modes on the angular momentum when the total
energy Etot=−2.3. This dependence represents redistribution
of the rotational energy among the collective modes with an
increase in the total angular momentum. Let us concentrate

on the chaotic motion. When M is in the range from 0.2 to
0.4, the constant value of the effective number of rotational
modes equals 4 �approximately�. It means that two pairs of
coupled rotational modes exist and the rotational energy is
distributed equally between them. However, chaotic rotation
in the range M � �0.2;0.4� noticeably differs from the rota-
tion of a rigid rotator due to the exchange of rotational en-
ergy among all effective modes.

When the angular momentum increases up to M =0.6
�Fig. 3� the effective number of rotational modes decreases
to 2. This can be explained as follows: at each total energy
there is a maximum value of normalized M above which the
angular momentum vector is forced out of the molecular
plane.31 This value of M depends very slightly on the total
energy, and for Etot=−2.3 is Mmax

C2v =0.71. It can be interpreted
as a reduction of tumbling with an increase of the angular
momentum. Therefore it is physically reasonable that for
chaotic motion the probability of rotation around the axis
lying in the molecular plane decreases, and the decrease of
the effective number of modes indicates a disappearance of
one of two stationary axes of rotation. At the same time it
should be noted that the decrease of the effective number of
rotational modes occurs when M =0.6, instead of the value
Mmax

C2v =0.71 which can be expected from the considerations
above. When the angular momentum reaches the value of

FIG. 1. Dependencies of the fraction of chaotic trajectories in relation to all
trajectories on the angular momentum. The solid curve and symbols “�”
correspond to the energy Etot=−1.9 and the dotted curve and symbols “�”
correspond to the energy Etot=−2.3. Critical values of the angular momen-
tum Mmax

C2v�Etot=−1.9�=0.72 and Mmax
C2v�Etot=−2.3�=0.71, related to rotation

around the C2v axis, are marked with the dot-dashed lines.

FIG. 2. Dependence of the fraction of chaotic trajectories in relation to all
trajectories on the angular momentum, Etot=−1.5. Critical values of the
angular momentum Mmax

C2v =0.72 and Mmax
D�h =0.84 relate to rotation around the

C2v axis and the D�h axis correspondingly. They are marked with the dot-
dashed and dotted lines.

FIG. 3. Dependence of the effective number of rotational modes on the
angular momentum, Etot=−2.3. The solid curve and symbols “�” corre-
spond to regular motion and the dotted curve and symbols “�” correspond
to chaotic motion. Critical value of the angular momentum Mmax

C2v =0.71 re-
lated to rotation around the C2v axis is marked with the dot-dashed line.
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0.6 simultaneously with a reduction of neff
rot to 2 the regular

component appears �in Fig. 1; fch=99.7% for M =0.6�; but
we have not found any regular trajectories for M �0.6. With
further increase of the angular momentum up to the value of
0.8 �M � �0.6;0.8��, the effective number of rotational
modes for the regular motion is larger than that for the cha-
otic motion �Fig. 3�. When M � �0.6;0.8� the way of rotation
for the regular and chaotic components, detected by the dif-
ference in the values of effective number of rotational
modes, creates a barrier that ensures a stability of regular
motion and leads to the increase in the volume of the regular
component. If M �0.6, there is always a possibility for tran-
sition to chaotic motion with the same number of axes of
rotation �Figs. 3 and 1�. Therefore, if the regular motion may
happen, then it loses stability and becomes chaotic.

The relation between the decrease of the volume of the
chaotic component and the change in the number of axes of
rotation was also revealed for other values of the total en-
ergy. For example, as is shown in Fig. 4 for Etot=−1.9 and
M �0.49, all calculated regular trajectories are linked with
the motion of atoms in the linear configuration with the only
axis of rotation. Let us note that motion in the linear con-
figuration was never found to be chaotic, thus rotation for the
regular component was performed differently than that for
the chaotic component. The distinction between two types of
motion which we have detected through the different values
of the effective number of rotational modes �neff

rot=2 for regu-
lar and neff

rot=4 for chaotic motion� creates a barrier for tran-
sition from regular to chaotic regime. When M 	Mmax

D�h

=0.49, rotation in the linear configuration becomes impos-
sible, and the motion of atoms in the cluster occurs only in a
triangular configuration. It leads to a reduction of the barrier
between regular and chaotic motion and, as a consequence,
to disappearance of the regular motion. With the further in-
crease in the angular momentum a degree of chaos in the
chaotic component gradually decreases, reflecting the loss of
stability of one of the rotation axes of the triangular cluster.
When the angular momentum reaches the value of M =0.72,
the effective number of rotational modes for the chaotic mo-
tion decreases from four to two. At the same value of angular
momentum a regular motion appears again �see Fig. 1, fch

=99.7% for M =0.72�. When 0.4�M �0.7, no regular tra-
jectories have been found. The effective number of rotational
modes for the regular motion remains larger than for the
chaotic motion until the angular momentum reaches 0.9. A
similar situation was observed for Etot=−2.3: a difference in
rotation for the regular and chaotic components, detected by
difference in the values of the effective numbers of rotational
modes, creates a barrier that reduces the volume of chaotic
component with growth of the angular momentum. Absence
of such a barrier for 0.49�M �0.72 leads to a lack of regu-
lar motion in this interval of M. We conclude that the value
of the angular momentum at which a growth of the regular
component volume begins depends on the total energy of the
system �see Fig. 1� and can be determined accurately using
the effective number of rotational modes.

The idea of a barrier helps to explain the dependence of
the chaotic component volume on the angular momentum
value for Etot=−1.5, namely, a significant increase in the
number of chaotic trajectories at M 	0.78 �Fig. 2�. A linear
configuration is theoretically accessible while the angular
moment M �Mmax

D�h =0.84. Regular motion in a linear con-
figuration is more preferable than in a triangular configura-
tion, so for M �0.78 all observed regular trajectories repre-
sent fluctuations of atoms around the linear configuration of
the cluster. However, we have not found a movement of the
atoms in a configuration close to the linear configuration of
the cluster when the value of the angular momentum is larger
than 0.78. Consequently, when M 	0.78 the regular motion
can occur only in a triangular configuration. At the same time
for regular motion in a triangular configuration, for M
�0.78, the effective number of rotational modes is only
slightly higher than it is for the chaotic motion �see Fig. 5�.
The barrier dividing different types of motion is too small,
leading to a substantial growth of the volume of the chaotic
component.

IV. SUMMARY

The influence of rotation on the internal dynamics of
small van der Waals clusters has been studied in this paper.
From general considerations one can assume that for small
values of angular momentum a large part of the kinetic en-

FIG. 4. Dependence of the effective number of rotational modes on the
angular momentum, Etot=−1.9. The solid curve and symbols “�” corre-
spond to regular motion and the dotted curve and symbols “�” correspond
to chaotic motion. Critical values of the angular momentum Mmax

C2v =0.72 and
Mmax

D�h =0.49, related to rotation of the cluster in the isosceles acute triangle
configuration around the C2v axis and in the linear configuration around the
D�h axis, respectively, are marked with the dot-dashed and dotted lines.

FIG. 5. Dependence of the effective number of rotational modes on the
angular momentum, Etot=−1.5. The solid curve and symbols “�” corre-
spond to regular motion and the dotted curve and symbols “�” correspond
to chaotic motion. Critical values of the angular momentum Mmax

C2v =0.72 and
Mmax

D�h =0.84, related to rotation of the cluster in the isosceles acute triangle
configuration around the C2v axis and in the linear configuration around the
D�h axis, respectively, are marked with the dot-dashed and dotted lines.
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ergy is contained in the vibrations and the fraction of chaotic
trajectories is large, and that this fraction should decline with
an increase of the angular momentum. We calculated the
dependence of the fraction of chaotic trajectories in relation
to all trajectories on the angular momentum using the Monte
Carlo and molecular dynamics methods and have found that
it is nonmonotonic, and that its functional form varies for
different values of the total energy. First, the fraction of cha-
otic trajectories begins to decrease starting from a certain
value of the angular momentum which depends on the value
of the total energy. Second, there is a substantial fraction of
regular trajectories for low values of the angular momentum
when the linear configuration is accessible. Third, for certain
value of the total energy we observed a second increase of
the fraction of chaotic trajectories for large values of the
angular momentum.

We used the method of effective modes to explain these
effects. The use of effective number of rotational modes has
made it possible to determine the value of the angular mo-
mentum at which a considerable decrease in the volume of
chaotic component occurs, and to explain all the features of
the functional form of the dependence of the fraction of cha-
otic trajectories on the angular momentum in a unified man-
ner. We have found that the regular motion occupies an es-
sential part of the phase space when rotation in the regular
and chaotic components is performed in different ways,
namely, with different numbers of rotation axes. The latter
has been evidenced by different values of the effective num-
ber of rotational modes. The difference in rotation in the
regular and chaotic components creates a barrier for transi-
tion between the components, permitting the existence of a
regular component. The conclusions are valid for different
values of the total energy related to the different regions of
the potential energy surface.
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