### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

#### РОССИЙСКАЯ АКАДЕМИЯ НАУК

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭКСПЕРИМЕНТАЛЬНОЙ МИНЕРАЛОГИИ ИМ. АКАДЕМИКА Д.С. КОРЖИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИЭМ РАН)

РОССИЙСКОЕ МИНЕРАЛОГИЧЕСКОЕ ОБЩЕСТВО



# НАУЧНАЯ КОНФЕРЕНЦИЯ

## «XIX РОССИЙСКОЕ СОВЕЩАНИЕ ПО ЭКСПЕРИМЕНТАЛЬНОЙ МИНЕРАЛОГИИ»

посвященного 90-летию Первого совещания по экспериментальной минералогии и петрографии и проводимого в рамках 300-летия Российской академии наук

## СБОРНИК МАТЕРИАЛОВ

23-26 сентября 2024 г. Черноголовка **Научная конференция «XIX Российское Совещание по экспериментальной минералогии»:** Сборник материалов, ИЭМ РАН, Черноголовка, 2024 г., 71с.

XIX В Российского Совешания сборнике представлены материалы экспериментальной минералогии. Совещание организовано на базе Федерального государственного бюджетного учреждения науки Институт экспериментальной минералогии имени академика Д.С. Коржинского Российской академии наук (г. Черноголовка, 23-26 сентября 2024 г.). В сборнике обсуждаются общие и частные проблемы экспериментальной минералогии, петрологии и геохимии. Уделяется внимание условиям зарождения и эволюции магм, минеральным равновесиям в силикатных и рудных системах, исследованиям гидротермальных и флюидных систем, синтезу минералов и их синтетических аналогов, технике и аналитическому экспериментальных исследований, a также экспериментальным исследованиям в области планетологии, метеоритики, космохимии и геоэкологии.

Все материалы представлены в авторской редакции

#### ISBN 978-5-6051043-1-5

ISBN 978-5-6051043-1-5



#### ПЛАВЛЕНИЕ ГИДРАТИРОВАННОГО БАЗАЛЬТА: ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ПАРАМЕТРИЗАЦИЯ

<u>А.В. Сапегина  $^{1,2*}$ ,</u> А.Л. Перчук  $^{1,2)}$  Кафедра петрологии и вулканологии, Геологический факультет, Московский государственный университет им. М.В. Ломоносова, г. Москва  $^{2)}$  Институт экспериментальной минералогии им. академика Д.С. Коржинского РАН, г. Черноголовка \*ann.sapegina@gmail.com

Зоны субдукции являются областями масштабной магмагенерации. В них помимо пород мантийного клина, плавлению могут подвергаться гидратированные базальты субдуцирующей океанической коры. Образованные таким образом вулканический породы называются адакитами, имеющими геохимические характеристики близкими гранитоидам раннедокембрийским ТТГ-формации. Последние, слагают значительные объемы кислой континентальной коры, генезис которой долгие годы остается дискуссионным. В связи с проблемой генезиса кислой коры было выполнено немало экспериментов по плавления пород основного состава в водной системе. Однако эксперименты не позволяют подробно охарактеризовать изменения степеней плавления пород особенно при Р-Т условиях близ линии водного солидуса. В тоже время, метод моделирования фазовых равновесий позволяет получать количественных данные по плавлению пород в слэбе (степени плавления, состав расплава и проч.) при предельно малом шаге по Р-Т условиям, в том числе в неохваченным экспериментами.

Для термодинамического моделирования фазовых равновесий в погружающейся плите мы использовали средние составы неизменённого и гидратированного базальтов срединноокеанического хребта (MORB). Фазовые P-T диаграммы были рассчитаны с использованием программного комплекса Perple X в диапазоне температур 600-1600°С и давлений 0-3 ГПа для водной (2.78 мас. % Н<sub>2</sub>О) системы. Полученные линии солидуса и ликвидуса, а также супрасолидусные фазовые отношения для неизмененного MORB хорошо соответствуют имеющимся в литературе экспериментальным данным. Для гидратированного изменённого MORB экспериментальные данные, опубликованные лишь в одной работе, также совпадают с результатами расчётов.

- $T' = \frac{|T^{-}T_{sol}|}{|T_{liq} T_{sol}|}$ С помощью моделирования были сначала рассчитаны степени плавления
- (F) базальта от температуры солидуса до температуры ликвидуса при фиксированном давлении от 0.0001 до 3 ГПа в обеих системах. На основе этих данных была выполнена параметризация плавления, связывающая степень плавления, с температуру и давление через безразмерный параметр T' (Katz et al., 2003), имеющий вид:

где T – температура,  $T_{sol}$  – температура солидуса;  $T_{liq}$  – температура ликвидуса (все температуры в °С). Расчетные кривые F(T') для обоих выбранных составов в водной системе характеризуются резким нарастанием объёма расплава возле линии солидуса и следующим далее более пологим монотонным участком.

Работа выполнена при поддержке гранта РНФ №23-17-00066.

1. Katz R. F., Spiegelman M., Langmuir C. H. // Geochem Geophys Geosyst, 2003, V. 4., №. 9.