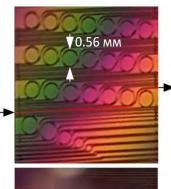
## РАСЧЕТ ДОБРОТНОСТИ МИКРО-КОЛЬЦЕВОГО РЕЗОНАТОРА: СРАВНЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ И МОДЕЛЬНЫХ ОЦЕНОК


<u>Артемов Д.Е.</u> <sup>1,2\*</sup>, Бучинский А.В. <sup>3</sup>, Трещиков В.Н. <sup>1</sup>, Федосеев А.И. <sup>2</sup>, Ершов А.А. <sup>4</sup>, Никитин А.А. <sup>4</sup>, Устинов А.Б. <sup>4</sup>

<sup>1</sup> ООО «Т8», г. Москва <sup>2</sup> МГУ им. М.В. Ломоносова, г. Москва

<sup>3</sup> Московский физико – технический институт, г. Долгопрудный

 $^4$  Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова, г. Санкт – Петербург

\* E-mail: artemov.de14@physics.msu.ru DOI 10.24412/2308-6920-2023-6-137-138



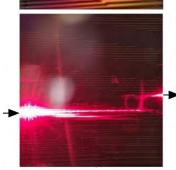



Рис. 1. Кристалл с микрокольцевыми резонаторами (фото сверху). Стрелками показаны ввод и вывод излучения. Внизу – ввод видимого излучения в один из МКР на кристалле

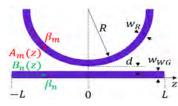



Рис. 2. Участок связи МКР и смежного волновода (вид сверху)

Микро-кольцевые резонаторы (МКР) (Рис.1) используются в составе фотонных интегральных схем для фильтрации длин волн, стабилизации лазерного излучения, а также в приложениях нелинейной оптики (генерация оптических гребенок). Для МКР, образованных многомодовым волноводом, добротность резонансов кольца определяется связью всех мод кольца и смежного волновода [1] и зависит от длины волны. На Рис. 1 изображен кристалл с различными МКР, произведенными на платформе  $Si_3N_4$  /  $SiO_2$  [2].

Для практических целей добротности резонансов МКР предварительно рассчитываются, часто с использованием 3-мерных моделей распространения света, реализованных в коммерческих программных пакетах (Comsol Multiphysics, Ansys Lumerical и т.п.). Недостатком использования полномасштабных 3-мерных моделей является длительность расчетов и сходимость результатов.

Для МКР нами предложена альтернативная упрощенная модель, в которой аналогичная задача решается в рамках одномерного осесимметричного приближения для медленно меняющихся амплитуд (Рис. 2). Сначала рассчитываются комплексных собственные поперечные моды волновода, образующего кольцо, и смежного волновода (задача на собственные функции и собственные значения). Для выбранного зазора d между волноводом и кольцом рассчитываются интегралы перекрытия  $C_{mn}(z)$  между поперечными модами кольца и волновода [3], m, n – номера поперечных мод кольца и волновода, соответственно. Далее с использованием формализма связанных мод [4,5] рассчитывается распределение вдоль оси г медленно меняющихся комплексных амплитуд поперечных мод кольца  $A_m(z)$  и мод смежного волновода  $B_n(z)$ , волновые фронты которых распространяются с фазовыми скоростями  $\beta_m$  и  $\beta_n$ , соответственно (рис. 2). Для каждой mпоперечной моды кольца коэффициент пропускания по амплитуде

рассчитывается по формуле  $t_m = \left| \frac{A_m(L)}{A_m(-L)} \right|$ . По известным потерям

мощности для  $\mathit{m}$  -поперечной моды кольца  $\alpha_{\scriptscriptstyle{m}} \; [\mathit{m}^{\scriptscriptstyle{-1}}]$  добротность этой же моды рассчитываются по формуле, выведенной по схеме

многолучевой интерференции [6]:  $Q_m = \frac{\pi n_{gr}(\lambda)L_m}{2\lambda} \cdot \arcsin\left(\frac{1-a_m t_m}{2\sqrt{a_m t_m}}\right)$ ,

где  $a_m \equiv e^{-\alpha_m L/2}$ ,  $n_{gr}(\lambda) = n_{eff}(\lambda) - \lambda \frac{dn_{eff}(\lambda)}{d\lambda}$  — групповой показатель преломления,  $\lambda$  — длина волны излучения,  $L_{\!\!\!m}=2\pi R\;n_{\!\!\!m}^{e\!f\!f}$  — оптическая длина МКР на длине волны  $\lambda_m$  (  $n_m^{e\!f\!f}$  — соответствующий эффективный показатель преломления). Все параметры, входящие в выражение для  $Q_m$ , рассчитаны для каждой геометрии МКР на кристалле (рис. 1).

Расчеты проведены для МКР при фиксированной толщине волноводов [2] и геометрических параметрах, выбранных при изготовлении (см. Рис. 2). По результатам расчетов сделана модельная оценка добротности  $Q_{m}(\lambda)$  одной фундаментальной поперечной моды МКР с наименьшим затуханием  $\alpha_m$  (m=1). Нами исследован спектр пропускания кольца, в котором наблюдаются выраженные резонансы. В эксперименте спектры пропускания МКР были измерены на установке для неразрушающего контроля параметров фотонных интегральных схем [7]. На Рис. 3 изображен измеренный спектр пропускания по мощности  $T = P_{\text{out}}/P_{\text{in}}$ . В резонансах (красные точки) световая мощность сосредоточена в микро-кольцевом резонаторе, поэтому пропускание снижено. Ширина резонансов определяется их добротностями. На вставке на рис. 3 показан спектр пропускания вблизи одного из резонансов. Для приближенной оценки добротности резонанса кольца может быть использован профиль Лоренца с разумно подобранными параметрами [4].

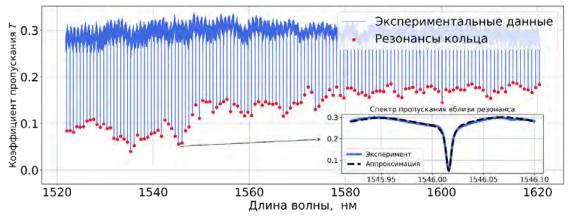



Рис. 3. Спектр пропускания исследуемого микро-кольцевого резонатора

На Рис. 4 показаны результаты расчета добротности фундаментальной моды кольца  $Q_{m-1}(\lambda)$  по описанной методике (сплошная кривая) и экспериментальные оценки добротности резонансов кольца (красные точки). Даже без учета погрешности выдерживания зазора d между кольцом и волноводом в процессе производства [2] модельные и экспериментальные результаты хорошо согласуются между собой, корреляция Пирсона составляет 81%.

Предложенная модель может быть использована для оценки добротности микро-кольцевых резонаторов в составе фотонных интегральных схем.

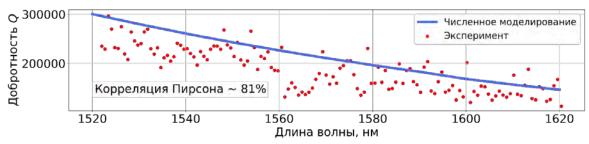



Рис. 4. Оценка добротности резонансов на основе экспериментальных данных и численного моделирования

## Литература

- 1. Pfeiffer M. H. P. et al. Physical Review Applied. 7, 024026 (2017)
- 2. Pfeiffer M. H. P. et al. Optica 3, 20-25 (2016)
- 3. Снайдер А., Лав Д. Теория оптических волноводов. – Радио и связь, (1987)
- Gorodetsky M. L., Ilchenko V. S. JOSA B. 16, 147-154 (1999) 4.
- 5. Matsuhara M., Watanabe A. JOSA. 65, 163-168 (1975)
- 6. Борн М., Вольф Э. Основы оптики (1973)
- Ershov A.A. et al. Microw. Opt. Technol. Lett. 65, 2451-2455 (2023)