Results and prospects on registration of reflected Cherenkov light of EAS from cosmic particles above 10¹⁵ eV

Timur DZHATDOEV on behalf of the SPHERE-2 Working Group

> Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia

> > PANIG-2014, Hamburg

Contents

- 1. Some experimental results on the all-particle CR spectrum and nuclear composition.
- 2. The reflected optical Vavilov-Cherenkov radiation ("Cherenkov light") method; development of the technique over the last 30 years.
- 3. The SPHERE-2 detector and the Working Group.
- 4. Reconstruction of the all-particle spectrum and composition. Systematic uncertainties.
- 5. Prospects.
- 6. Conclusions.

This talk is mostly based on the extensive (~60-page) paper: R.A. Antonov et al., Phys. Part. Nucl., **1**, (2015) (In press).

(Some) experimental results on the all-particle CR spectrum (R. Abbasi et al. (ICETOP) 2012 (astro-ph/1202.3039))

 10^{5} $\cdot \times E^{2.7} (\text{GeV}^{1.7} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$ This work **ICETOP**, 2 Components **ICETOP**, Proton CASA-BLANCA AKENO CASA-MIA DICE GRIGOROV GAMMA KASCADE HEGRA **KASCADE-Grande** MSU TIBET, SIBYLL TIBET, QGSJET TIEN SHAN TUNKA \triangle 0.5 1.5 0 $\log(\tilde{E}/PeV)$

Dependence of the reconstructed intensity on nuclear composition may introduce systematic uncertainty of the all-particle CR spectrum.For some EAS techniques this uncertainty is up to ~20-30 %.

Primary composition (Y. Tsunesada et al. (BASJE), Proc. 30th ICRC, **4**, 127 (2008)). Newer review: K.-H. Kampert & M. Unger, APh, **35**, 660 (2012) (see slides 22-23)

W. D. Apel et al. (KASCADE-Grande), Phys. Rev. D 87, 081101(R) (2013)

End of Galactic CR spectrum (model): J. Hoerandel, APh, **19**, 193 (2003)

The simplest assumption would be that the extra component above 100 PeV is composed of extragalactic protons (e.g. V.S. Berezinsky et al., Phys. Rev. D 74, 043005 (2006)) → very light composition at 1000 PeV

The reflected Cherenkov light method

Introduced by A.E. Chudakov: Proc. All-USSR Symp. on Exp. Meth. of UHECR (Yakutsk) (In Russian), 69 (1974).

First detection: C. Castagnoli et al., Proc. 17th ICRC, **6**, 103 (1981) (experiment in mountains, "sliding geometry").

Further development:

1. R.A. Antonov et al., Proc. 14th ICRC, **9**, 3360 (1975); R.A. Antonov et al., SINP MSU Preprint (1995) (The SPHERE-1 detector prototype, "sliding geometry").

2. R.A. Antonov et al., Proc. 27th ICRC, **1**, 59 (2001) (The SPHERE-1 balloon-borne experiment with mosaic of 19 PMTs).

3. The SPHERE-2 detector: mosaic of 109 PMTs, 12.5 ns sampling. Currently the most advanced experiment (both hardware and analysis) utilizing the reflected Cherenkov light method.

The SPHERE-2 balloon-borne detector

 $5 \approx H^2$

H= 200-900 m, $T_{EXP} \approx 130$ h 2008-2009: test flights; only sporadic EAS observed 2010-2013 (February-March) (4 upgrades): ~30 hours of exposition/year; about 1100 EAS in total

The SPHERE-2 Working Group

Our main task: study of the primary spectrum and composition at E= 10 PeV – 1 EeV using Cherenkov light of EAS reflected from the snow surface of Lake Baikal

- Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (Moscow):
- R.A. Antonov, T.V. Aulova, E.A. Bonvech, D.V. Chernov, T.A. Dzhatdoev, T.M. Roganova

Lebedev Physical Institute of the Russian Academy of Sciences (Moscow): S.P. Beschapov, N.V. Kabanova, A.S. Petkun, S.B. Shaulov, T.I. Sysoeva

Charles University, Prague, Czech Republic: Mir. Finger, Mix. Finger: MSU Physics Department (Moscow): V.I. Galkin, D.A. Podgrudkov + valuable contributions from our technical collaborators!

e-mail: chr@dec1.sinp.msu.ru (hardware), timur1606@gmail.com (analysis)

http://sphere.sinp.msu.ru/

Low-level experimental data analysis

b)

d)

Possible to probe Lateral Distribution Function (LDF) near to the axis (<50 m) \rightarrow <u>event-by-event</u> sensitivity to nuclear composition!

Simulations (a,b) and energy distribution data-MC comparison (c)

The "Composite Model LDF" concept How to deal with geometric smearing over the PMTs field-of-view (FOV)?

Compensate for geometrical effects and average many model LDFs for one CORSIKA shower. Red: CORSIKA LDF Black: "Composite Model LDF" \rightarrow good agreement except <u>near the axis (optical smearing)</u> and <u>at large distances (digitization effects)</u>

Energy reconstruction uncertainty (conservative) Most of showers in red area are not "seen" by the trigger

∈(E) vs. (E,R) for H= 815 m

Energy reconstruction method: Fit experimental LDF to a sample of "composite model LDFs" with normalization factor k; **E**= **Const**·**k** (L.G. Dedenko et al., Nucl. Phys. B (Proc. Suppl.), 136, 1217 (2004))

Reconstructed all-nuclei spectrum

Other results include: ICETOP (M.G. Aartsen et al., Phys. Rev. D, 88, 042004 (2013)) Yakutsk (S.P. Knurenko et al., 33rd ICRC (2013)) The principle of the primary composition study

 η = LDF steepness parameter sensitive to composition (*);

also needed for the acceptance estimation at E<30 PeV

a fraction f(p) estimated from fitting of experimental distribution with a weighted sum for p and Fe

for more details

Reconstructed fraction of light nuclei for the 2012 run (R.A. Antonov et al., J. Phys. Conf. Ser., **409** 012088 (2013) Fraction of light nuclei averaged over $30-150 \text{ PeV}=21\pm11 \%$

Black lines: estimated systematics

Blue arrows: dependence of the primary composition vs. acceptance

The second independent analysis is ongoing...

Prospects

I. Spectrum and composition study at E>50 PeV with tethered balloon at H= 2-3 km. SPHERE-type detector with 1000 channels will allow to independently measure the KASCADE-Grande light component "ankle" at 100 PeV with ~4 σ significance during ~400 h exposition (2-3 winter seasons with stable snow cover). $E_{THR} < 10$ PeV, ~100 X enhanced statistics w.r.t. the current SPHERE-2 exposition.

II. Measurement of Ultrahigh Energy Cosmic Rays (UHECR) all-nuclei spectrum with SPHERE-type detector during long-duration high-altitude Antarctic flight (R.A. Antonov, Russian Cosmic Ray Conference (2014)).

E_{THR} = 100 PeV (Cherenkov light), 1 EeV (fluorescent light).

Conclusions

I. The reflected Cherenkov light method is currently mature enough to be competitive with other EAS observation methods, given sufficient observation time.

II. For the first time, a detailed reconstruction of the all-particle CR spectrum at E= 3-300 PeV was performed using reflected Cherenkov light.

III. As well, this technique allows the CR nuclear composition study on event-by-event basis.

IV. Reflected Cherenkov light is a promising signal to study CR at E>100 PeV, either with tethered balloon at H= 2-3 km, or during high-altitude Antarctic flight.

Acknowledgements

Authors are grateful to:

The Russian Foundation for Basic Research (grant 11-02-01475-a, 12-02-10015-k, 13-02-00470-a); Russian President grants LSS-871.2012.2; LSS-3110.2014.2 The Program of basic researches of Presidium of Russian Academy of Sciences "Fundamental properties of a matter and astrophysics" for the support;

The technical collaborators of the SPHERE-2 experiment.

Calculations of the instrumental acceptance were performed using the SINP MSU OKM Center computer cluster. Authors are grateful to V.V. Kalegaev for permission to use the hardware and to V.O. Barinova, M.D. Nguen, D.A. Parunakyan for support.

Additional slides

Measured <ln A> for (mostly) optical detectors (K.-H. Kampert & M. Unger, APh, **35**, 660 (2012))

...and for particle detectors

Simulations

SPHERE-2 field-of-view geometry with model LDF superimposed hybrid MC CORSIKA/Geant4 approach CORSIKA/(QGSJET-I/II, GHEISHA) [1-4]: 10, 30, 100 PeV showers (1.5 k). Full direct MC! Geant4 [5]: optical and geometrical effects. ~1M simulated events.

1.D. Heck et al. FZKA 6019 (1998)
2.N. Kalmykov et al, Nucl. Phys. Proc.
Suppl. B, 52, 17 (1997)
3.H.C. Fesefeldt, Technical Report No.
PITHA 85-02 RWTH (1985)
4.S. Ostapchenko, Nucl. Phys. Proc.
Suppl. B, 151, 143 (2006)
5.S. Agostinelli et al., NIM A, 506, 250 (2003)

Simulations (2)

- Example of reconstructed LDF for model shower: before (in ph.el., black) and after digitization (in code units, normalized to black points)
- Example of simulated instrumental acceptance: proton (black), Helium (green), Nitrogen (blue), Iron (red)
- Example of simulated (curves) and experimental (magenta points) energy distributions. Thick magenta curve model energy distribution for mixed composition.

Experimental data analysis

200

100

300

500

600 R. m

400

- b) The same event after pattern recognition procedure (subtraction of δt for each channel)
- c) Example of reconstructed lateral distribution function (LDF) of an observed shower

Experimental data analysis (2)

For the spectrum estimation, we select contained events (CONT) (axis within FOV of the detector) + some external events (EXT) (distance from the FOV edge to the axis R<100 m) For composition reconstruction: the same, but for R<30 m

Uncertainties of the parameters estimation: $\delta\theta \approx 1.5^{\circ}$ for $\theta < 20^{\circ}$ 1. $\epsilon(E) \approx 20\%$ for E > 30PeV and axis at (0,0) 2. $\epsilon(E) < 30\%$ for E > 30PeV (conservative estimate for CONT); 3. $\epsilon(E) \sim (30 \text{ PeV/E})^{0.5}$ for E < 30PeV, CONT 4. $\epsilon(E) < 50\%$ for R < 100 m and EXT events that were seen by the trigger

The all-nuclei spectrum

Under evaluation: 8. acceptance vs. optical axis inclination (mostly due to wind); at E>10-15 PeV probably second order effect Under attack: 9. energy vs. composition

Detector's optical axis inclination reconstructed by two methods

A short note on the number of observed EAS

Let systematical uncertainty on intensity be ~15 % ~40 events/energy bin would cause the statistical fluctuation of 15 %

Thus, the total uncertainty of the spectrum starts to saturate (2 decades on energy assumed):

For 3 bin/decade of energy: more than $6 \cdot 40 = 240$ events For 5 bin/decade of energy: more than $10 \cdot 40 = 400$ events For 10 bin/decade of energy: more than $20 \cdot 40 = 800$ events In this work we use LDF steepness with $(r_1, r_2, r_3, r_4) = (0,67,67,134)$ m.

For p/Iron selection it is possible to select 40- 60 % of protons, depending of the zenith angle range.

This task is simpler than p/Helium classification.