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I.  Introduction

High-precision etching of narrow trenches is a key issue in 
the advanced fabrication of microelectronic devices [1]. The 
etching of insulating materials is accompanied by a charging 
effect whose physical origin is due to the differences in the 
electron and ion angular distributions. The charging effect 
induces many serious damage problems in plasma processing 
such as bowing, trenching, etching rate reduction, and even 
the breakdown of lower level device elements [2–5]. The 
reduction in device sizes and multilayer structures requires a 
high-aspect ratio in SiO2 etching and in the etching of new 
dielectric materials with a low dielectric constant [6]. As a 
result, the charging effect becomes even more important. 
Thus, understanding the effects of surface charging is key to 
the accurate description of etching at the nanometer scale.

Numerical simulation is the main tool to describe plasma 
etching of dielectrics and semiconductors in present-day com-
plementary metal–oxide–semiconductor (CMOS) technology. 
The simulation procedure is normally split into two parts, such 
as discharge modeling and plasma–surface interaction [7, 8]. 
The last one includes the simulation of ion-stimulated processes 
on the surface of a dielectric or semiconductor [9, 10]. As was 
mentioned above, the plasma–insulator surface interaction leads 
to charging of the insulator trenches in addition to etching. The 
direct measurement of the electric potential inside trenches has 
been a complex problem until now, so since the beginning of the 
1990s the main way to describe the charging process has been 
the numerical modeling of electron and ion trajectories [11–18].

Until recently [19–21] it has mostly been suggested that 
the angular dispersion of ionic velocities around the direc-
tion to the normal to the film surface is not more than ~5° in 
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the plasma sheath of a radio frequency-biased substrate. As a 
sequence all the trench etching and charging calculations were 
carried out based on Monte Carlo methods for this ion angular 
distribution function (IADF). Nevertheless, some experiments 
showed the angular dispersions can exceed ~5° [22, 23] for 
low-pressure plasma, and the question as to what happens for 
larger angles is thus still open.

In this paper, we applied the Monte Carlo approach to cal-
culate the electric potential on the trench bottom for angular 
dispersions larger than ~5°. Suggesting the electric potential 
and an ion flux on the trench bottom may correlate, we found 
and presented the analytical dependences of the ion flux on 
the trench bottom on aspect ratios (ARs) and the IADF, to 
the best of our knowledge, for the first time. We also show 
further that the ion flux and electric potential dependences on 
different trench ARs and IADFs match each other nicely.

The worth of the obtained analytical expression for the ion 
flux and its correlation with the numerically calculated elec-
tric potential on the ARs and the IADF is twofold. First, it can 
be used for a quick analytic estimation of the electric potential 
on the trench bottom without the necessity of running time-
consuming Monte Carlo charging programs. Second, it can 
easily be included in Monte Carlo etching codes to consider 
the electric field impact on the ionic and electron trajectories 
in a trench.

The formulation of the problem and the basic idea of our 
analytical approach to obtain the ion flux on the trench bottom 
will be described in section  II. A detailed discussion of the 
obtained analytical results for trenches with ARs of 1–6 and 
trench widths of 12 nm for 45–180 eV ion flux and their vali-
dation by Monte Carlo calculations will be presented in sec-
tion III. Finally, we give our conclusion in section IV.

II. Theory

The electric potential on the trench bottom in comparison with 
the one on the trench entrance depends on the net charge left 
by the ions and electrons on the trench bottom. The number 
of ions coming to the trench bottom is defined by their flux 
from the plasma, while the number of electrons coming to 
the trench bottom is governed by their flux from the plasma 
and by the flux generated as a result of the secondary electron 
emission (SEE) from the trench walls. The numerous Monte 
Carlo calculations have shown that the electric potentials in 
the trenches do not depend on their width and height, but only 
depend on their ARs [24, 25].

To the best of our knowledge the dependence of the elec-
tric potential in a trench on the IADF in plasma has not been 
investigated. In this paper we present an approach that gives 
analytically a qualitative dependence of the potential on the 
trench bottom on the trench ARs and the IADF. This approach 
is based on the suggestion that this dependence is basically 
defined by an ion flux on the trench bottom. The argument 
for this hypothesis is that the obtained analytic depend
ences are well correlated to the numerical results obtained by 
Monte Carlo calculations. Unfortunately, at the moment the 
direct measurements of the electric potential inside dielectric 
trenches do not exist to validate our results.

The next stage of development of the presented model 
is to consider the generation of the secondary electrons as a 
result of the SEE from the trench walls. This should lead to the 
opportunity of calculating the absolute value of the electric 
potential in a trench, and not only its qualitative behavior. We 
plan to complete it in our next publication.

Thus, let us define the ion flux fion in two-dimensional (2D) 
space as the number of ions bombarding a unit of a trench 
length per a unit of time. Let us assume that monoenergetic 
ion fluxes have a simplified shape of the ion angular distribu-
tion fion, namely, a constant in the range of 0  <  θ  <  α and zero 
otherwise, where a polar angle θ is defined as the angle from a 
direction to the normal to the film and α is its maximal value, 

Figure 1.  Geometry of the periodic trenches, critical angles, and 
the angular distributions of the ions and electrons.

Figure 2.  Integration limits for calculations of the net ion flux 
on the trench bottom for maximal polar angles in the range of 

⩽ ⩽θ α π /2cr .
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see figure 1. As is known from plasma processing technology, 
the IADF is anisotropic, i.e. α  <  π/2, in comparison with an 
electron one, which is approximately isotropic, i.e. α  =  π/2, 
in most cases. To normalize fion on the net flux Nion coming 
into the trench we need to integrate it over all the ion angles 
and positions r at the trench entrance, see figure 1:

∫ ∫ θ θ=
α

α

− −
N r fd cos d

R

R

ion ion� (1)

then the fion constant is given by:

α
=f

N

R4 sin
.ion

ion
� (2)

We will calculate the ion flux on the trench bottom assuming 
the ion trajectories are straight lines. Note this assumption is 
reasonable if the ion energies exceed considerably the typical 
values of a negative potential near the trench entrance of a few 
eV and a positive potential on the trench bottom of a few tens 
eV. For convenience of calculation one needs to introduce a 
value of a critical angle ϴcr  =  tan−1(1/A), see figure 1, where 
A  =  H/2R is an AR of the trench with its width of 2R and its 
height of H.

Thus, the net ion flux on the trench bottom equals, see 
figures 2–4:

( ) ∫ ∫α θ θ=
θ

θ

−
F A r f, 2 d cos d

R

ion
0

ion
1

2

� (3)

where factor 2 appears because of the task symmetry relative 
to the trench axis. To integrate equation (3) we need to con-
sider three distinctive cases.

In the first case, when the maximal angle α belongs to a 
range:

⩽ ⩽θ α π /2cr� (4)

one needs use the following integration limits, see figure 2, 
in red:

θ

θ

=
+

=
−

−

−

R r

H
R r

H

tan

tan

1
1

2
1

� (5)

because the ions coming into the trench from any r position 
are always able to reach any position on the trench bottom. 
Then, integrating equation (3) over the limits given by equa-
tion (5) and substituting the value of fion from equation (2) into 
equation (3) one directly obtains:

{ }( )α
α

= + −F A
N

A A,
sin

1ion
ion 2� (6)

The details of these calculations are presented in the 
appendix in equations (A.1) and (A.2) at the end of the paper.

In the second case the angular range is:

⩽ ⩽θ α θc cr� (7)

and one needs use the following limits of integration to calcu-
late ( )αF A,ion , see figures 3(a) and (b):

⎧
⎨
⎪

⎩⎪

r r
R r

H
r r

R r

H

, *

tan , *

tan

1 1

2
1

θ
α

θ

=
>

+
<

=
−

−

−

� (8)

where r*  =  H  ×  tan(α)  −  R. Figures  3(a) and (b) demon-
strate the angle θ2 is always the same because α is always 
less than θ2. As we can see from figures 3(a) and (b), if the 
value θ1  =  tan−1{(R  +  r)/H} is less than α, see figure  3(a), 
we need to use it and θ1  =  α in the opposite case, see 
figure  3(b). The parameter r* is defined from the equality 
α  =  tan−1{(R  +  r*)/H}.

Substituting the value of fion from equation  (2) in equa-
tion  (3) and its integration with the limits of equation  (8)  
leads to:

Figure 3.  (a)–(b) Integration limits for calculations of the net ion flux on the trench bottom for maximal polar angles in the range of 
⩽ ⩽θ α θc cr for cases α  >  θ1 (a) and α  <  θ1 (b).
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{ }( )α
α
α

= − ×
−

F A N A, 1
1 cos

sin
ion ion� (9)

The details of these calculations are given in the appendix 
in equations (A.3)–(A.5) at the end of the paper.

In the third (last) case, when the ion angular distribution 
belongs to the angular interval:

⩽ ⩽α θ0 c� (10)

the following integration limits must be used, see figures 4(a) 
and (b):

⩽

⩾

θ α

θ
α

=

= −−

⎧
⎨
⎪

⎩⎪

r r
R r

H
r r

, *

tan , *

1

2 1
� (11)

where r*  =  R  −  H  ×  tan(α). As we can see from fig-
ures 4(a) and (b) the angle θ1 equals α because it is always 
less than θc, while the angle θ2 is a minimal one between α, 
see figure  4(b), and tan−1{(R  −  r)/H}, see figure  4(a), and 
the parameter r* is extracted from their equality. It is inter-
esting to note in the last case that we obtain the same result for 

( )αF A,ion  after the integration of equation (3) with the limits 
of equation  (11) as the one in equation  (9). The details are 
given in the appendix in equations (A.6)–(A.8) at the end of 
the paper.

In the case of α  =  0 the ion angular distribution is pre-
sented by delta-function directed to the surface normal, and 
the use of equation (9) leads to ( )αF A,ion   =  Nion, i.e. all ions 
coming into the trench reach its bottom, as must be the case.

Combining the second, equation (6), and the third, equa-
tion (9), cases the total result for ( )αF A,ion  can be written as:

{ }
{ }

( )
⩽ ⩽

⩽ ⩽

⎧

⎨
⎪⎪

⎩
⎪⎪

α

α
α

α θ

α
θ α π

=
− ×

−

+ −
F A

N A

N
A A

,
1

1 cos

sin
, 0

sin
1 , /2

ion

ion cr

ion 2
cr

� (12)

Thus, equation  (12) gives the explicit analytic dependence 
of the total ion flux on the trench bottom on the trench AR 
and ion angular distribution, which is the main result of our 
paper.

It is rather useful to analyze the distribution of the ion fluxes 
over the trench walls and bottom to understand qualitatively 
how different sectors of the trench surface may be charged up.

Let us re-write equation (3) to calculate the ion flux on the 
left wall for the initial flux position of the trench inlet, see 
figure 5(a), for convenience as:

( ) ∫ ∫α θ θ=
α

θ

−

−
F A f r,

*
d cos d

r

ion ion
0

2

� (13)

where θ2  =  tan−1(r/H) and the integration over r is made from 
0 to r*  =  H  ×  tan(α) for 0  ⩽  α  ⩽  θсr, and up to r*  =  2R for 
θсr  ⩽  α  ⩽  π/2. Then we can introduce a grid on the left wall, 
see figure 5(b), and define Hi  =  i  ×  h and Hi+1  =  (i  +  1)  ×  h, 
where h is a grid spacing in the trench height direction, and 
then the ion flux on the ith cell of the grid ΔFi  =  Fion, i+1 
(α, Ai+1)  −  Fion, i(α, Ai) with Ai  =  Hi/2R can be written:

⎪
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α
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α θ

α
θ α

π
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−

+ + − +
+

�

(14)

The details of these calculations are shown in the appendix in 
equations (A.9)–(A.12) at the end of the paper.

In order to describe the ion flux on the jth cell of the trench 
bottom we present the cell length as Δr  =  2R/(L  −  1), where 
L is a number of grid nodes, and re-write equation(3):

∫ ∫α
θ θ∆ =

θ

θ

−

−
F

N
r

2 sin
d cos dj

r

r
ion

min

max

1

2

� (15)

where rmax  =  min(1, j  ×  Δr/2R  +  A  ×  tan(α)) and rmin  =   
max(0, (j  +  1)  ×  Δr/2R  −  A  ×  tan(α)), while the angular 
integration limits are:

Figure 4.  (a)–(b) Integration limits for calculations of the net ion flux on the trench bottom for maximal polar angles in the range of 
⩽ ⩽α θ0 c for cases α  >  θ2 (a) and α  <  θ2 (b).
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( )
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Here r is normalized by 2R. Substituting the limits given 
by equation  (16) in equation  (15) one may show, see equa-
tions (A.13) and (A.14) in the appendix, the ion flux on the jth 
cell of the trench bottom is:

F
N

A r r A r r

A r r A r r

2 sin
j j j

j j

ion 2
min

2 2
max

2

2
max 1

2 2
min 1

2

{
}

( ) ( )

( ) ( )

α
∆ = + − − + −

+ + − − + −− −

� (17)
where ( )= − ∆−r j r R1 /2j 1  and = ∆r j r R/2j . For electrons 
similar formulas to equations(1)–(17) can be obtained by the 
substitution α  =  π/2. However, they must be applied only 
as initial conditions for unsteady calculations of the trench 
charging because the electron trajectories for the typical dis-
charge energies of ~3 eV are too sensitive to the typical poten-
tial of a few eV at the trench entrance and a few tens eV [24] 
on the trench bottom. The ion trajectories are also sensitive 
to the electric potential, but their energies noticeably exceed 
the negative potential at the trench entrance and the positive 
potential on the trench bottom. Thus, the obtained formulas 
given by equations (12), (14) and (17) can be applied to esti-
mate the potential on the trench bottom.

III.  Results and discussion

First of all we consider how the ion fluxes are distributed over 
the trench surface including the walls and the bottom. Figure 6 
demonstrates the ion flux distribution over the trench height 
of 0 to 8 ARs computed using equation (14). It can be seen 
that all the curves have straight-line segments until the heights 
calculated from the equality of α  =  2θc. The ion flux on the 
trench height cells for the chosen angle α is a constant during 

this segment, and the wall is charging uniformly positive over 
the height. The red line shows the ion flux distribution over the 
trench height for fully isotropic ion angular distribution. Note, 
the electron flux over the trench height will be the same if we 
neglect the negative potential on the trench entrance and the 
positive one on the trench bottom, i.e. in the case of the begin-
ning of the trench charging when these potentials are to small 
to affect the electron trajectories. Figure 6 shows in red the 
electron fluxes on the wall cells near the trench inlet are the 
largest, and thus this part of the trench wall will become neg-
atively charged. This fact is confirmed by numerous Monte 
Carlo calculations [24].

Figures 7(a) and (b) present the ion flux distribution over 
the trench bottom calculated using equation (16) for the max-
imal angles of α  =  2.5° and 7.5°, consequently. In both cases 

Figure 5.  Integration limits for calculations of the net ion flux on the trench wall from two positions on the trench inlet (a) and the ion flux 
ΔFi on the ith cell of the trench wall for an arbitrary point on the trench inlet (b).

Figure 6.  Distribution of the ion flux on the trench wall as a 
function of the aspect ratios.

J. Phys. D: Appl. Phys. 49 (2016) 105203
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the ion fluxes have long flat central parts, especially for small 
ARs such as A  =  1–2. A further increase in the AR leads to 
focusing the magnitude of the ion fluxes on the center of the 
trench bottom. We can also see from figures 7(a) and (b) that 
for the ARs larger than A  =  1/tan(α), ~22.904 at α  =  2.5° and 
~7.596 at α  =  7.5°, the magnitude of the ion fluxes drops rap-
idly and its distribution over the trench bottom becomes almost 
uniform. This means the ions starting from any point of the 
trench inlet are able to reach any point on the trench bottom 
and the total fluxes on any cell of the trench bottom become 
the same. It can be seen from equation (15) that the integra-
tion limits over the initial positions of ions on the trench inlet 
are equal to rmin  =  0 and rmax  =  1 and do not depend on the 
position of the jth cell on the trench bottom. The values of the 
ion fluxes will decrease with an increase in the trench depth 
(H) because the integration limits over the angles will make 
the integral smaller in accordance with equation (16), i.e. the 
input in the total ion flux on the trench bottom cell from any 
point of the trench inlet becomes smaller.

Figures 7(a) and (b) also show the interesting behavior of 
the ion fluxes for A  <  1/tan(α), when they, having flat central 
parts, shrink to the point at A  =  1/{2 tan(α)} in accordance 
with equation (15), i.e. A  =  3.798 at α  =  7.5° and A  =  11.452 
at α  =  2.5°. Note this happens when the flux on the central 
cell of the trench bottom is the first one, which is the sum of 
the ion fluxes from all points of the trench inlet.

Let us suggest the number of positive charges on the sec-
tors of the trench bottom is directly proportional to the ion flux 
in this sector. A surplus of the positive charge in the center of 
the trench bottom leads to the appearance of the radial electric 
field curving ion trajectories towards the trench walls near its 
bottom. This fact was confirmed by numerous Monte Carlo 
calculations by different authors. From figures  7(a) and (b) 
one can see the large potential gradients at both edges of the 
trench bottom towards the wall for all A  <  1/tan(α).

The net ion flux on the trench bottom as a function of the 
maximal angle α for different trench ARs is calculated on the 
base of equation (12) and is presented in figure 8. It can be 
seen that the general form of this dependence is described by 
a monotonous function falling off towards the area of large 
angles. All the curves approach some constant limits at the 
angle α  =  π/2 corresponding to the isotropic angular distribu-
tion of ions. One can see from figure 8 that the increase in the 
AR leads to a sharp decrease in the net ion flux on the trench 
bottom in the area of small values of α.

Figure 7.  (a) The ion flux on the trench bottom as a function of its position = ∆r j r R/2j  on the trench bottom, see equation (17), for the 
maximal polar angle of 2.5° and aspect ratios A  =  2, 5, 11, 12, 15, 18, and 23. (b) The ion flux on the trench bottom as a function of its 
position = ∆r j r R/2j  on the trench bottom, see equation (17), for the maximal polar angle of 7.5° and aspect ratios A  =  1, 2, 3, 4, 5, and 8.

Figure 8.  The net ion flux on the trench bottom as a function of the 
maximal polar angle α of the ion angular distribution function for 
different aspect ratios.

J. Phys. D: Appl. Phys. 49 (2016) 105203
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Let us demonstrate the dependence of the net ion flux on 
the trench bottom on the maximal angle α can be applied to 
the estimation of the same dependence of the electric poten-
tial. It does not look obvious at first glance because the elec-
tric potential also depends on the net number of electrons 
trapped on the trench bottom. This number of electrons is 
formed by electron fluxes on the trench bottom, which consist 
of the electron trajectories curved in the electric field and the 
electrons generated by the SEE mechanism. In the absence 
of experimental data we applied a Monte Carlo method on 
the basis of our physical model considering both the electron 

trajectory curving and the SEE mechanism [24] to calculate 
the dependence of the electric potential on the trench bottom 
on different trench ARs, as well as the ion energy and angular 
distributions. The ion energies were chosen in the range of 
45–180 eV to decrease the presence of the negative poten-
tial on the ion trajectories at the trench inlet. The obtained 
results for a trench width of 12 nm and trench ARs of 1, 3, and 
6 are shown in figures 9(a)–(c), respectively. The results of 
the Monte Carlo modeling shown in figures 9(a)–(c) confirm 
the found analytic regularities very well. The best agreement 
between the analytic and numerical results is obtained for 

Figure 9.  (a) The total ion flux on the trench bottom as a function of the maximal polar angle α of the ion angular distribution function 
for A  =  1. The triangles, diamonds, and crosses are the electric potentials on the trench bottom in arbitrary units (a.u.) calculated with 
Monte Carlo methods. (b) The total ion flux on the trench bottom as a function of the maximal polar angle of the ion angular distribution 
function for A  =  3. The triangles, diamonds, and crosses are the electric potentials on the trench bottom in a.u. calculated with Monte Carlo 
methods. (c) The total ion flux on the trench bottom as a function of the maximal polar angle α of the ion angular distribution function for 
A  =  6. The triangles are the electric potentials on the trench bottom in a.u. calculated with Monte Carlo methods.

J. Phys. D: Appl. Phys. 49 (2016) 105203
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ARs of 3 and 6 when the electron flux on the trench bottom 
is generated mainly by the SEE mechanism, which dominates 
the curving of the plasma electron trajectories in an electric 
field at high ARs. For A  =  1 the disagreement of the analytic 
and numerical results is more noticeable. This can probably be 
explained by the dominance of the curving of the plasma elec-
tron trajectories in an electric field over the SEE mechanism 
for small values of ARs. Thus, further work will be required 
to consider the effects of electron fluxes on the formation of 
the electric potential on the trench bottom. Nevertheless, the 
obtained analytic formulas given by equation  (12) could be 
suggested for the express estimation of the IADF dependence 
of the electric potential on the trench bottom.

Finally, the advantages of the proposed analytical approach 
are its simplicity and capability for further extension. It can 
be applied with a few changes to trenches with conical shapes 
or extended to three-dimensional (3D) cylindrical geometry. 
Including electron fluxes of both natures will allow one to 
calculate the absolute values of the electric potential on the 
trench bottom. Considering the probability of ion sputtering 
from the wall surfaces results in the calculation of ion mass 
transport in the trench and the effects of trench charging on it.

IV.  Conclusion

In this paper, ion flux bombarding the trench bottom was 
calculated analytically for the first time as a function of the 
ion angular distribution in the range of α  =  0  −  π/2 and the 
trench AR. The analytical dependence of the ion flux on the 
trench bottom on a trench AR was found, as well as the IADF 
correlating well with the Monte Carlo numerical calculations 
of the electric potential on the trench bottom. These Monte 
Carlo calculations involve both the curving of the charge par-
ticle trajectories in an electric field and the SEE mechanism.

The best correlation was found for the maximal angles α, 
less than 20°, i.e. ones typical for plasma processing tech-
nology. This fact allows us to introduce the obtained formula, 
namely equation (12), for a quick analytic estimation of the 
electric potential on the trench bottom as a function of the 
trench AR and the IADF without the necessity of running 
time-consuming Monte Carlo charging programs. We also 
expect to apply this formula in Monte Carlo etching codes to 
consider the impact of an electric field on ionic and electron 
trajectories in a trench.

In this paper, we also presented the analytical formulas 
(equations (13)–(17)) of ionic flux distribution over the trench 
walls and bottom as a function of the AR and the IADF for the 
first time. We expect the obtained dependences to be helpful 
for understanding physical processes such as charging and 
etching for plasma processing technology.
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Appendix  

First of all let us consider the derivation details of the main 
equation (12) of this paper. There are three cases and we start 
from the simplest one when ⩽ ⩽θ α π /2cr . To obtain equa-
tion  (6) one needs to substitute the integration limits given 
by equation (5) into equation (3) to take the integral over the 
available angles:
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The integration of the last line over the initial ion positions on 
the trench inlet leads us to:
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where A  =  H/2R is an AR.
The second case considers the angular range ⩽ ⩽θ α θc cr. 

The top angular limit is the same as in our previous calcul
ations, see equation  (A.1). The low angular limit, see equa-
tion (8) depends on r, thus the integration over r must be split 
into two parts. As the first step we integrate over angles and 
over r for the top angular limit:
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The integration of the last line over the initial ion positions on 
the trench inlet leads us to:
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Substituting r*  =  H  ×  tan(α)  −  R in equation (A.4) one gets 
equation (9):
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The third case describes the angular range ⩽ ⩽α θ0 c. The 
low angular limit is simple. The top angular limit, see equa-
tion (11) depends on r, thus the integration over r must be split 
into two parts. As the first step we integrate over angles and 
over r for the low angular limit:
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The integration of the last line over the initial ion positions on 
the trench inlet leads one to:
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We see the final results for the second and third cases are iden-
tical. So, after merging equations (A.2), (A.5) and (A.7) we 
obtain the main formula equation (12) of this paper:
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The total ion fluxes on the trench walls given by equation (14) 
can be obtained from equation (13), written for convenience 
for the left wall as:
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where θ2  =  tan−1(r/H). Now we need to consider two cases. 
The first one for angles in the range of 0  ⩽  α  ⩽  θсr leads to the 
maximal value r*  =  H  ×  tan(α) and the ion flux coming from 
the trench inlet on one wall of height H:
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The factor 1/2 considers one wall only in the final line. The 
second case for angles in the range of θсr  ⩽  α  ⩽  π/2 leads to 
the maximal value r*  =  2R and the ion flux coming to a wall 
of height H in accordance with equation (A.9) becomes:
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If we want to get an ion flux on one cell on the wall we need 
to take two total fluxes; one covers the wall length from the 
beginning of the trench at h  =  0 until the height h  =  x, and 
the other flux covers the length from H  =  0 until H  =  x  +  dx, 
where dx is the size of a cell. At the next step we need to 
subtract the first flux from the last one. To make it for the 
whole wall one needs to digitize it. Let us introduce instead of 
H its discrete equivalents Hi  =  i  ×  h and Hi+1  =  (i  +  1)  ×  h, 
where h is a grid spacing in the trench height direction, and  
then the ion flux on the ith cell of the grid ΔFi  =  Fion, i+1 
(α, Ai+1)  −  Fion, i(α, Ai) with Ai  =  Hi/2R can be written in 
accordance with equations (A.10) and (A.11):
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which is exactly the same as equation (14).
Let us consider how equation (17) for the ion distribution 

over the trench bottom can be obtained from equation  (15). 
First, we need to integrate equation (15) over angles and sub-
stitute the angular integration limits from equation (16):
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where ( )= − −x r r A/j1 1  and ( )= −x r r A/j2 , the ( )= − ∆−r j r R1 /2j 1   
and = ∆r j r R/2j  are the positions of the (  j  −  1)th and jth cells 
on the trench bottom, respectively, r  =  x/2R and x is a position 
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of the initial ion flux on the trench inlet. Second, we have to 
take the integral over r substituting the above-mentioned x2 
and x1 and the values of rmax and rmin taken from equation (15):
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which leads exactly to equation (17).
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