УДК 544.51+544.52

Природа двухполосной флуоресценции 4-(*N*,*N*-диметиламино)бензонитрила и родственных соединений*

М. Н. Химич, * В. В. Волчков, М. Я. Мельников

Московский государственный университет имени М. В. Ломоносова, Химический факультет, Российская Федерация, 119991 Москва, Ленинские горы, 1, стр. 3. E-mail: khimichmn@my.msu.ru

С использованием квантово-химических методов (DFT, TDDFT, XMCQDPT2 с учетом растворителя в рамках методов SMD и DPCM) изучены спектральнолюминесцентные, электрические свойства и строение 4-(*N*,*N*-диметиламино)бензонитрила и ряда родственных ему соединений в основном и низших электронновозбужденных состояниях. Показано, что характерная для них двухполосная флуоресценция обусловлена эмиссией из двух низших синглетных электронновозбужденных состояний, отличающихся электростатическими и геометрическими параметрами: состояния В с плоской геометрией (коротковолновая полоса) и более полярного состояния А, в котором замещенная аминогруппа скручена относительного бензольного кольца. При этом образование обоих состояний характеризуется значительным перераспределением электронной плотности, что не позволяет дифференцировать состояния А и В как состояние с переносом заряда и локально возбужденное состояние.

Ключевые слова: структурная релаксация, внутримолекулярный перенос заряда, скручивание, перенос заряда со скручиванием аминогруппы (TICT), 4-(*N*,*N*-диметиламино)бензонитрил (DMABN), времязависимая теория функционала плотности (TDDFT), метод XMCQDPT.

Двухполосная флуоресценция 4-(N,Nдиметиламино)бензонитрила (DMABN, 1a) и родственных ему соединений изучается с середины прошлого века¹. Однако до сих пор не выработано единого мнения о детальном механизме этого явления. Согласно первоначальной гипотезе Липперта¹ у DMABN имеется два близких низколежащих синглетных электронновозбужденных состояния: состояние с переносом заряда (СТ) и локально-возбужденное состояние (LE). Значительно более полярное СТ-состояние, ответственное за длинноволновую полосу флуоресценции, лучше стабилизируется в полярных средах за счет переориентации молекул в сольватной оболочке. В малополярных и неполярных средах отмечается флуоресценция преимущественно из малополярного LE-состояния. Позднее были предложены различные гипотезы, рассматривающие конформационные аспекты превращений LE \rightarrow CT.² В настоящее время сохраняют актуальность две из них: перенос заряда со скручиванием аминогруппы (TICT)^{3,4} и перенос заряда с сохранением плоской структуры молекулы (PICT)^{5–8}. Опираясь на результаты квантово-химических расчетов DMABN-родственных соединений, большинство современных исследователей являются сторонниками гипотезы TICT.^{9–11} С гипотезой TICT, в частности, согласуется отсутствие длинноволновой полосы флуоресценции у некоторых аналогов DMABN (соединения 2, 3a и 3b), где подвижность аминогруппы ограничена дополнительным связыванием с ароматическим ядром¹². Однако в 1-*трет*-бутил-6-циано-1,2,3,4тетрагидрохинолине (3c), несмотря на такое связывание, длинноволновая полоса флуоресценции наблюдается, что, по мнению авторов¹², согласуется с гипотезой PICT.

Сложность установления детального механизма фоторелаксации заключается в невозможности непосредственно зарегистрировать конформационную эволюцию молекул. Помощь в интерпретации данных, полученных методами абсорбционной и флуоресцентной стационарной и времяразрешенной спектроскопии, может оказать квантово-химический расчет.

В настоящей работе квантово-химическими методами изучены фотофизические, электриче-

^{*} Посвящается академику Российской академии наук В. И. Минкину в связи с его 90-летием.

ские (дипольный момент и распределение заряда в молекуле) свойства и строение в основном и низших электронно-возбужденных состояниях ряда DMABN-родственных соединений.

1: R = Me (a), H (b); 3: R = Me (a), (Me)₂CH (b), Bu^t (c)

5	R	R′
а	Me	Ph
b	Me	н
С	Et	н
d	Me	OH
е	Me	OEt

Методы расчета

Квантово-химические расчеты проводили с использованием программного пакета GAMESS $(US)^{13}$ с базисным набором 6-31G(d, p). Геометрию молекул в основном и возбужденном состояниях оптимизировали с помощью методов DFT и TDDFT соответственно (функционал cam-B3LYP). Влияние растворителя учитывали с помощью континуальной модели сольватации, основанной на плотности заряда (SMD)¹⁴. Спектры поглощения и испускания рассчитаны с использованием программного пакета Firefly v.8.2¹⁵ с помощью усредненного по состояниям многоконфигурационного метода самосогласованного поля в полном активном пространстве (SA-CASSCF), улучшенного с помощью квазивырожденной теории возмущений второго порядка (XMCQDPT2)¹⁶. Активное пространство включало 12 электронов на 10 орбиталях (соединения 1a,b, 2, 3а-с, 4, 5а), 10 электронов на 8 орбиталях (соединения **5b,c**), 14 электронов на 10 орбиталях (соединения 5d,e) и 14 электронов на 11 орбиталях (соединение 6). Матрицу плотности усредняли по четырем нижним синглетным состояниям. Для расчета энергии триплетного состояния в усреднение добавляли четыре нижних триплетных состояния. Влияние растворителя учитывали с помощью модели

диэлектрического поляризуемого континуума (DPCM)¹⁷. При построении профилей поверхностей потенциальной энергии (ПППЭ) скручивания использовали один из двух методов.

1. В исходной молекуле, геометрические параметры которой оптимальны для основного состояния, изменяли только значение соответствующего двугранного угла, другие геометрические параметры не оптимизировали. В этом случае ПППЭ для всех состояний нерелаксированные, т.е. геометрические параметры в каждой их точке не оптимальны для данного состояния.

2. Геометрические параметры в каждой точке данного состояния оптимизировали при фиксированном значении соответствующего двугранного угла. Соответствующий ПППЭ — релаксированный. Для построения ПППЭ других состояний данного соединения (если это не указано отдельно) использовали определенные выше геометрические параметры. Профили для этих состояний нерелаксированные.

Обсуждение полученных результатов

В расчетном спектре поглощения соединений 1-6 можно выделить первые два низкоэнергетических перехода: высокоинтенсивный переход из основного состояния (S₀) S₀ \rightarrow A (сила осциллятора $f \ge 0.5$) и малоинтенсивный $S_0 \rightarrow B$ (f < 0.1), (табл. 1, рис. 1). Для большинства изученных соединений характерен небольшой энергетический зазор между состояниями А и В и относительно небольшая сила осциллятора перехода $S_0 \rightarrow B$, благодаря чему в их спектрах поглощения наблюдается лишь интенсивная полоса A (см. рис. 1, a). Полосу В можно четко выделить в спектре поглощения соединения 6, для которого характерен максимальный энергетический зазор между состояниями А и В (~1 эВ) и максимальное соотношение сил осциллятора ($f_{\rm B}/f_{\rm A}$) (~0.18) (см. рис. 1, b). В спектрах поглощения других соединений полоса В может проявляться в полярных растворителях как длинноволновое плечо на основной полосе А.

В образование состояния А основной вклад вносит переход с орбитали B3MO(1) на HCMO(1') (рис. 2). Природа состояния В зависит от типа акцептора в *пара*-положении. У нитрильных (соединения **1**—**3**) и карбоксильных (соединения **5d,e**) производных, а также соединений **4** и **6** образование состояния В (B₁) связано с переходом B3MO(1) \rightarrow HCMO(2'). Для карбонильных производных (соединения **5а—с**) основной вклад вносит п— π -переход B3MO(2) \rightarrow HCMO(1') (B₂). При этом образование состояний А и B₁ характеризуется возрастанием дипольного момента, для соединения **1а** от 10 Д в основном состоянии

Таблица 1. Расчетные энергетические и спектральные параметры соединений **1**—**6** в ацетонитриле: энергия возбуждения $S_0 \rightarrow A$ и $S_0 \rightarrow B$ (E_{ex}), сила осциллятора перехода (f), энергия испускания из релаксированного возбужденного состояния (E_{em}), энергия скручивания (ΔE_t), определенная как разность энергий релаксированных состояний A_r и B_r , а также экспериментальные спектральные параметры для соединений **1**—**6** в ацетонитриле: максимумы поглощения (E_{abs}^{max}) и флуоресценции (E_{flu}^{max})

Соеди- нение	Расчет (XMCQDPT2)							Эксперимент			
	$E_{\rm ex}$ /эВ		f		$E_{\rm em}$ /эВ		$\Delta E_{\rm t}$	$E_{abs}^{max}/\Im B$	$E_{\rm flu}^{\rm max}/\Im B$		Ссылка
	А	В	A	В	А	В	/кДж•моль⁻≀		CT	LE	
1a	4.15	3.79	0.7	0.04	2.54	3.4	-12.5	4.25	2.52	3.41	18
1b	4.42	3.92	0.7	0.06	2.85	3.53	17.8	4.4	_	3.53	19
2	3.89	3.52	0.7	0.04	3.13	3.01	23.1	4.03	_	3.32	12
3a	4.04	3.65	0.7	0.05	2.52	3.26	20.7	4.09	_	3.42	12
3b	3.93	3.57	0.7	0.05	2.51	3.14	6.1	4.04	_	3.38	12
3c	3.8	3.62	0.7	0.04	2.53	3.08	-14.7	3.98	2.87	_	12
4	4.81	4.37	0.6	0.04	2.77	3.72	-32.3	4.84	2.72	3.76	18
5a	3.61	3.1	0.5	0.02	2.02	2.24	-4.6	3.59	1.97	3.2	18
5b	3.67	3.49	0.9	10^{-4}	2.18	3.35	-29.8	3.7	2.1	3.3	18
5c	3.55	3.48	0.9	10^{-3}	2.12	3.18	-47.6	3.66	2.1	3.16	18
5d	3.92	3.81	0.7	0.05	2.38	3.37	-31.2	4.03	2.4	3.2	18
5e	4.0	3.85	0.7	0.05	2.44	3.41	-20.5	4.03	2.42	3.48	18
6	5.06	4.01	0.44	0.08	3.31	3.46	42.4	3.97, 4.98	—	3.52	20

Рис. 1. Спектры поглощения и расчетные полосы возбуждения (энергии переходов $S_0 \rightarrow S_1(B)$ и $S_0 \rightarrow S_2(A)$ и силы осциллятора (*f*)) соединений **1a** (*a*) и **6** (*b*) в ацетонитриле (для построения спектра поглощения соединения **6** использованы данные из работы²¹).

до 17.5 и 14.6 Д (состояния A и B соответственно). Образование состояния B₂, напротив, характеризуется значительным уменьшением дипольного момента — до 3.2—4.9 Д. Направление вектора дипольного момента (от замещенной аминогруппы к электроноакцепторному заместителю в *пара*-положении) при возбуждении сохраняется. Возбуждения $S_0 \rightarrow B_1$ и $S_0 \rightarrow A$ сопровождаются близким по величине увеличением положительного заряда на замещенной аминогруппе (рис. 3). В первом случае оно обусловлено возрастанием электронной плотности на бензольном кольце, во втором — еще и на цианогруппе. Возбуждение $S_0 \rightarrow B_2$ сопровождается сдвигом электронной плотности от карбонильной группы на аминогруппу и бензольное кольцо.

Таким образом, значительный сдвиг электронной плотности и изменение дипольного момента происходит как при образовании состояния А, так и при образовании состояний В₁ и В₂. Это не позволяет дифференцировать А и В как состояние с переносом заряда и локально возбужденное состояние и объяснить аномально большой стоксов сдвиг длинноволновой полосы флуоресценции, в первую очередь, реорганизацией сольватной оболочки состояния А. Аномально большой стоксов сдвиг этой полосы, вероятно, обусловлен другим релаксационным процессом, связанным со структурными изменениями в молекуле флуорофора.

Рис. 2. Две ВЗМО (1, 2) и две НСМО (1', 2') соединения **5b** в MeCN.

Рис. 3. Распределение зарядов на различных фрагментах молекулы соединений **1a** (a) и **5b** (b) в основном и электронновозбужденных состояниях (стрелками указано направление вектора дипольного момента).

Для установления механизма этого процесса для каждого изученного соединения оптимизирована геометрия молекулы в основном и обоих возбужденных состояниях (А и В). В основном состоянии атомы, входящие в сопряженную π-систему, в большинстве случаев лежат в одной плоскости, максимальное отклонение атомов от плоскости не превышает 0.05 Å. У соединения 5а плоская структура нарушается вследствие отталкивания бензольных фрагментов, угол между их плоскостями составляет 49°. Величина угла пирамидализации замещенной аминогруппы в молекулах большинства изученных соединений не превышает 10°. Максимальные значения, превышающие 20°, связаны с жесткими структурными ограничениями (в соединении 2) или иной природой акцептора в *пара*-положении (атом F в соединении 6). Угол θ, характеризующий скручивание аминогруппы и определенный как среднее значение двух двугранных углов: С(2)-С(1)-

N-C(N(1)) и C(6)-C(1)-N-C(N(2)) (рис. 4), для большинства соединений не превышает нескольких градусов. Большой угол скручивания (24°) в основном состоянии характерен для соединения **3с** и обусловлен, в первую очередь, стерическим эффектом *трет*-бутильного заместителя. В возбужденном состоянии для релаксированной формы B_r в большинстве случаев также характерна структура, близкая к плоской (угол θ не превышает 20°). При оптимизации геометрии состояния A у всех изученных соединений, за исключением соединения **2**, происходит скручивание молекулы по аминогруппе.

Так, для релаксированной формы A_r соединения **1а** величина межплоскостного угла скручивания θ близка к 90° (см. рис. 4), а расчетная энергия испускания этой формы близка к энергии длинноволновой полосы флуоресценции (см. табл. 1). На основании полученных данных на примере соединения **1а** можно предложить

Рис. 4. Скручивание замещенной аминогруппы у соединения 1а при возбуждении.

маршрут релаксации энергии возбуждения, обусловливающий двухполосную флуоресценцию, представленный на рисунке 5.

При возбуждении (1) в области максимума длинноволновой полосы поглощения (4-4.5 эВ) преимущественно заселяется состояние S_2 (форма А*), так как сила осциллятора соответствующего перехода значительно больше, чем перехода $S_0 \rightarrow S_1$. Из возможных вариантов релаксации состояния А* (процессы внутренней и интеркомбинационной конверсий, испускание флуоресценции ($S_2 \rightarrow S_0$), скручивание замещенной аминогруппы и т.п.) самым быстрым представляется внутренняя конверсия ($S_2(A) \rightarrow S_1(B)$), приводящая к образованию состояния В (2). Испускание (3) из этого состояния наблюдается в эксперименте в виде коротковолновой полосы флуоресценции. Малая сила осциллятора перехода S₁(B)→ S₀ и большой энергетический зазор между этими состояниями замедляют дезактивацию S₁(B) - S₀, что приводит к возможности скручивания (4) в S₁ состоянии с образованием формы А_r. Область пересечения состояний А и В определяет барьер скручивания ($E_a = E_{S_1} \max - E_{B_r}$), а разность энергий релаксированных состояний

Рис. 5. Схема процессов в основном и возбужденных состояниях соединения **1a** в ацетонитриле (все ПППЭ релаксированные; см. пояснения в тексте).

А_г и В_г определяет энергию скручивания ($\Delta E_t = E_{A_r} - E_{B_r}$). Испускание (5) скрученной формы отвечает за длинноволновую полосу флуоресценции. Наряду с испусканием флуоресценции и безызлучательной дезактивацей в основное состояние из формы А_г возможна интеркомбинационная конверсия (6) S₁(A)→ T₁, которой способствует практически отсутствующий энергетический зазор между этими состояниями. Барьер скручивания для соединения **1а** составляет 0.16 эВ (15 кДж • моль⁻¹), а энергия скручивания –0.13 эВ (-13 кДж • моль⁻¹).

В рамках данного подхода можно объяснить влияние растворителя на спектр флуоресценции соединения 1а. В полярных растворителях, таких как ацетонитрил, более полярное состояние А дополнительно стабилизируется за счет реорганизации сольватной оболочки, что уменьшает барьер и энергию скручивания. С уменьшением полярности растворителя уменьшается и эта стабилизация. Так, для соединения 1а в гептане барьер скручивания увеличивается до 0.25 эВ (24 кДж · моль⁻¹), а энергия скручивания до 0.06 эВ (6 кДж • моль $^{-1}$), что делает этот процесс энергетически невыгодным (рис. 6) и приводит к отсутствию длинноволновой флуоресценции. Данный конформационный подход позволяет объяснить спектрально-флуоресцентные

Рис. 6. Зависимость энергии низших синглетных электронновозбужденных состояний соединения **1a** в гептане от угла скручивания аминогруппы (ПППЭ релаксированные).

свойства и других родственных соединений, отличающихся свойствами донорной и акцепторной групп, а также имеющих некоторые структурные ограничения.

Полученная зависимость энергии состояний S_0 , S_1 и S_2 от угла скручивания замещенной аминогруппы (θ) в молекулах соединений **3с**, **4**, **5а**—е аналогична зависимости, полученной для соединения **1а**. При возбуждении этих соединений более низкой энергией в нерелаксированном со-

Рис. 7. Зависимость энергии трех низших синглетных состояний соединений **4** (*a*), **5b** (*b*) и **5c** (*c*) от угла скручивания аминогруппы в ацетонитриле (ПППЭ нерелаксированные).

стоянии обладает форма В. Однако при скручивании энергия состояния B(S₁) увеличивается, а состояния A(S₂) уменьшается. При больших углах скручивания (более 40-60°) происходит инверсия этих двух состояний и состояние А оказывается более энергетически выгодным, чем состояние В. Зависимость энергии S₁ состояния от угла скручивания имеет два минимума, соответствующих уплощенной форме B_r и скрученной А_г. Для группы указанных соединений форма А_г имеет меньшую энергию, энергия скручивания отрицательная. Эти результаты согласуются с результатами эксперимента – в спектрах флуоресценции соединений 3с, 4 и 5а-е в полярных растворителях, так же как в спектрах соединения 1а, присутствует длинноволновая полоса с аномально большим стоксовым сдвигом. Среди этих соединений целесообразно выделить соединения 5а-с, в которых акцептором электронной плотности является карбонильная группа. Как было отмечено выше, низколежащим возбужденным состоянием здесь является В₂, основной вклад в образование которого вносит n-π*-переход с орбитали, расположенной на карбонильной группе. Несмотря на некоторые отличия, зависимость энергии основного и двух низколежащих синглетных электронновозбужденных состояний от угла скручивания в этих соединениях аналогична таковой для соединения 1а (рис. 7).

Соединение **5с** отличается от соединения **5b** большей электронодонорной способностью замещенной аминогруппы. Для него характерна меньшая энергия возбуждения $S_1 \rightarrow A$ и меньший зазор между состояниями A и B, что приводит к уменьшению энергии скручивания.

Интересное поведение демонстрирует соединение **5a**. Согласно расчетам в состоянии B (B_2) у него также происходит скручивание, но не по донорной аминогруппе, а по акцепторному бензоильному фрагменту, что также приводит к значительному длинноволновому сдвигу расчетной полосы испускания этой формы (рис. 8, 9).

Важно отметить особенности релаксации соединений **2** и **3а**—**c**, в которых аминогруппа через углеводородный заместитель дополнительно связана с бензольным кольцом в *орто*-положении. Скручивание аминогруппы в таких соединениях затруднено, и длинноволновая полоса флуоресценции, предположительно, не должна наблюдаться. Для соединений **2**, **3а** и **3b** это оказалось справедливым, однако в спектре флуоресценции соединения **3с** в ацетонитриле преобладает длинноволновая полоса с аномально большим сток-

Рис. 8. Скручивание по акцепторному бензоильному фрагменту в соединении 5а.

Рис. 9. Зависимость энергии трех низших синглетных состояний от двугранного угла C(5)-C(4)-C(7)-O соединения **5а** в ацетонитриле (геометрия оптимизирована для S₁).

совым сдвигом¹². Это, по мнению авторов¹², свидетельствует о том, что двухполосная флуоресценция аминобензонитрилов обусловлена переносом заряда с сохранением плоской структуры молекулы (PICT). Наши расчеты показывают, что молекулы **3а**—с недостаточно жесткие, скручивание формы A в них возможно, хотя и ограничено 60° (рис. 10). При этом только для соединения **3с** скручивание энергетически выгодно, а для соединений **3а** и **3b** характерна положительная энергия скручивания. Из-за большей жесткости молекулы соединения **2** на конформационной кривой отсутствует минимум, соответствующий форме A_r .

Отдельно следует рассмотреть соединения **1b** и **6**, в спектрах флуоресценции которых отсутствует длинноволновая полоса с аномально большим стоксовым сдвигом. Более слабая электронодонорная способность монометилзамещенной аминогруппы у соединения **1b** (относительно диметилзамещенной у **1a**) приводит к увеличению энергии состояния A, а следовательно, к увеличению энергетического зазора между состояниями A и B. Это обусловливает увеличение как потенциального барьера, так и энергии скручивания в соединении **1b** (рис. 11) по сравнению с **1a**.

Рис. 10. Зависимость энергии трех низших синглетных состояний соединений **2** (*a*), **3a** (*b*) и **3c** (*c*) от угла скручивания аминогруппы в ацетонитриле (геометрия оптимизирована для S_0).

Соединение **6** отличается от других DMABNродственных соединений значительным энергетическим зазором между состояниями A и B. Это позволяет, с одной стороны, четко выделить полосу B в спектре его поглощения (см. рис. 1), а с другой — может приводить к значительному возрастанию энергии формы A_r относительно B_r, делая скручивание в возбужденном состоянии нереализуемым.

Ранее сообщалось об обнаружении двухполосной флуоресценции для соединения **6**,²¹ обусловленной двумя формами, одной из которых является TICT. Позднее эти результаты были опровергнуты²⁰. Было показано, что в спектрах флуоресценции соединения **6** в растворителях различной полярности присутствует только LE-полоса с моноэкспоненциальной кинетикой затухания. Причиной отсутствия ICT-флуоресценции (ICT — Intramolecular Charge Transfer, внутримолекулярный перенос заряда) авторами названа²⁰ относительно большая энергетическая щель ΔE_{AB} . Эти выводы подтверждаются расчетами методом XMCQDPT2, показывающими,

Рис. 11. Зависимость энергии трех низших синглетных состояний соединений **1b** (a) и **6** (b) от угла скручивания аминогруппы в ацетонитриле (ПППЭ нерелаксированные).

что при скручивании форма A остается значительно менее выгодной, чем исходная форма B (см. рис. 11).

Таким образом, первоначально значительный длинноволновый сдвиг полосы флуоресценции состояния А относительно состояния В соединения 1а был объяснен переориентацией сольватной оболочки возбужденной молекулы¹. Определенное исходя из такого предположения значительное увеличение дипольного момента при возбуждении состояния А (от 6 до 23 Д) позволило отнести последнее к состоянию с переносом заряда в отличии от локально возбужденного состояния В. Наши расчеты показали, что при образовании как состояния А, так и состояний В₁ и В₂ происходит изменение дипольного момента. Несмотря на то что в первом случае перераспределение электронной плотности в молекуле более выражено, возникает вопрос: достаточно ли велико это различие, чтобы дифференцировать эти состояния как состояние с переносом заряда и локально возбужденное состояние для всех изученных соединений?

Из полученных расчетных данных можно сделать вывод, что длинноволновая полоса флуоресценции соединений **1a**, **3c**, **4** и **5а**—**c** относится к испусканию формы A_r , которая образуется в результате скручивания замещенной аминогруппы относительно бензольного кольца. Именно скручиванием обусловлено значительное уменьшение энергетического зазора между S_1 и S_0 состояниями (см. рис. 5 и 7) и, как следствие, значительный длинноволновый сдвиг полосы флуоресценции. Коротковолновая полоса относится к испусканию менее полярной формы В, структура которой близка к плоской.

Отсутствие длинноволновой полосы флуоресценции связано с тем, что процесс скручивания в S₁-состоянии является энергетически невыгодным, что может быть обусловлено разными причинами, среди которых структурные ограничения (соединения **2**, **3a**, **3b**) и увеличенный энергетический зазор между состояниями A и B (соединения **1b**, **6**). К увеличению энергетического зазора может приводить уменьшение электронодонорной способности в замещенной аминогруппе (соединение **1b**) или особенности заместителя в *пара*-положении (соединение **6**), а также недостаточная полярность растворителя.

Благодарности

Исследование проведено с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами Московского государственного университета имени М. В. Ломоносова.

Финансирование

Работа выполнена в рамках государственного задания по теме AAAA-A21-121011590090-7.

Соблюдение этических норм

Настоящая статья не содержит описания исследований с использованием в качестве объектов животных и людей.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

Список литературы

- E. Lippert, W. Lüder, H. Boos, in *Advances in Molecular Spectroscopy*, Ed. A. Mangini, Pergamon Press, Oxford, 1962, p. 443; DOI: 10.1016/B978-1-4832-1332-3.50070-6.
- 2. Z. R. Grabowski, K. Rotkiewicz, W. Rettig, *Chem. Rev.*, 2003, **203**, 3899; DOI: 10.1021/cr9407451.
- K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, *Chem. Phys. Lett.*, 1973, **19**, 315; DOI: 10.1016/0009-2614(73)80367-7.
- 4. J. Karpiuk, Z. R. Grabowski, F. C. De Schryver, *Proc. Ind. Acad. Sci.*, 1992, **104**, 133; DOI: 10.1007/ BF02863358.
- K. A. Zachariasse, M. Grobys, E. Tauer, *Chem. Phys. Lett.*, 1997, **274**, 372; DOI: 10.1016/S0009-2614(97)00668-4.
- K. A. Zachariasse, *Chem. Phys. Lett.*, 2000, **320**, 8; DOI: 10.1016/S0009-2614(00)00230-X.
- Y. V. Il'ichev, W. Kühnle, K. A. Zachariasse, J. Phys. Chem. A, 1998, 102, 5670; DOI: 10.1021/jp9804260.

- K. A. Zachariasse, M. Grobys, Th. von der Haar, A. Hebecker, Yu. V. Il'ichev, O. Morawski, I. Rückert, W. Kühnle, *Photochem. Photobiol A: Chem.*, 1997, **105**, 373; DOI: 10.1016/S1010-6030(96)04601-1.
- C. Chen, C. Fang, *Chemosensors*, 2023, **11**, 87; DOI: 10.3390/chemosensors11020087.
- M. A. Kochman, B. Durbeej, J. Phys. Chem. A, 2020, 124, 2193; DOI: 10.1021/acs.jpca.9b10588.
- 11. R. Youngworth, B. Roux, J. Phys. Chem. B, 2024, **128**, 172; DOI: 10.1021/acs.jpcb.3c02975.
- K. A. Zachariasse, S. I. Druzhinin, W. Bosch, R. Machinek, *J. Am. Chem. Soc.*, 2004, **126**, 1705; DOI: 10.1021/ja037544w.
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.*, 1993, 14, 1347; DOI: 10.1002/jcc.540141112.
- 14. A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378; DOI: 10.1021/jp810292n.
- 15. A. A. Granovsky, *Firefly 8.2*, 2017, build 10203.
- 16. A. A. Granovsky, J. Chem. Phys., 2011, 134, 214113; DOI: 10.1063/1.3596699.
- 17.S. Miertus, E. Scrocco, J. Tomasi, *Chem. Phys.*, 1981, 55, 117; DOI: 10.1016/0301-0104(81)85090-2.
- V. V. Volchkov, M. N. Khimich, M. V. Rusalov, F. E. Gostev, I. V. Shelaev, V. A. Nadtochenko, S. P. Gromov, M. Ya. Melnikov, *J. Phys. Org. Chem.*, 2020, 33, e4041; DOI: 10.1002/poc.4041.
- S. I. Druzhinin, V. A. Galievsky, K. A. Zachariasse, J. Phys. Chem. A, 2005, 109, 11213; DOI: 10.1021/ jp055012r.
- 20. K. A. Zachariasse, A. Demeter, S. I. Druzhinin, J. Phys. Chem. A, 2017, 121, 1223; DOI: 10.1021/acs. jpca.6b12142.
- 21.T. Fujiwara, C. Reichardt, R. A. Vogt, C. E. Crespo-Hernández, M. G. Zgierski, E. C. Lim, *Chem. Phys. Lett.*, 2013, **586**, 70; DOI: 10.1016/j.cplett.2013.09.028.

Поступила в редакцию 22 октября 2024; принята к публикации 6 декабря 2024