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Abstract—This study addresses the problem of environmental monitoring of air in cities and industrial
areas, which consists in identification of gases and volatile organic compounds using metal oxide (MOX)
semiconductor gas sensors. To provide selectivity in the detection of certain gases, the laboratory-made
MOX gas sensors are operated in a modulated working temperature mode in combination with signal
processing and machine learning approach to establish the response models. Six types of nonlinear
operating temperature conditions—the so-called heating dynamics—were applied to twelve sensors with
sensing layers of different chemical composition. Nine gases (CO, CH4, H2, NH3, NO, NO2, H2S, SO2,
formaldehyde) in six different concentrations each were used as polluting admixtures to dry clean air. Due
to the high complexity of the model describing the processes of interaction between gases and sensors,
machine learning methods (logistic regression, random forest and gradient boosting) based on the use of
physical experiment data were used to process the sensor response. Optimal heating dynamics and optimal
machine learning methods for gas identification have been determined.
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1. INTRODUCTION

Low-cost gas sensors are deemed as a perspective
means of environmental monitoring with high spatio-
temporal resolution [1]. Metal oxide (MOX) semicon-
ductor resistive type sensors attract most attention
in this regard due to ability of long-term continuous
operation and wide spectrum of detected compounds
[2]. Application of sensor arrays and signal process-
ing allows even detection, identification and quantifi-
cation of odors, which is crucial for quality-of-life as-
sessment in highly urbanized and industrialized areas
[3, 4]. The widespread practical application of such air
monitoring systems requires and overcome of a cur-
rent barrier—long term instability and difficulties with
transferability of response models [5]. Concerning
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the response model transferability problem various
artificial neural network architectures are applied in
combination with deep learning and transfer learning
approaches, which allow to significantly reduce the
recalibration time and number of required data sam-
ples [6, 7]. The other approach to the model transfer-
ability problem consists in the building of the global
response models, accounting for the all possible devi-
ations of sensor properties during manufacturing [8].
The long-term response stability could be addressed
with the use of machine learning approach, based on
linear regression algorithms, when continuous oper-
ation time is used itself as a parameter [9]. A drift
compensation without the use of the standard data
samples has been suggested with the use of transfer
learning as well [10]. The other machine learning
approaches for metal oxide gas sensor drift compen-
sation include extreme learning machines [11] online
active or self-training models [12, 13], or deep learn-
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ing models with automatically extracted features [14].
A combination of sensors into an array, their working
temperature modulation, raw data preprocessing and
machine learning based building of response model
has been shown in the recent past to be fruitful in
order to stabilize the sensor response against short-
term effects of media fluctuations [15]. However,
the influence of the working temperature modulation
parameters on the response model performance were
studied only in the narrow borders [16–19], and no
firm connection between them were established yet.
The present work addresses in the systematic fashion
the question of MOX gas sensor working temperature
modulation mode and its relation to the stability and
quality of such response models, built upon various
machine learning methods for the purpose of individ-
ual gases identification.

2. PHYSICAL EXPERIMENT

2.1. Gas Sensors Fabrication

A set of MOX gas sensors were fabricated on the
basis of microelectromechanical system (MEMS)
microheaters as described previously [20], with the
use of a number of purposely synthesized gas sensing
materials. The materials were based on nanocrys-
talline SnO2 and TiO2 semiconductor oxides, ob-
tained via flame spray pyrolysis (FSP) route [21].
In total 12 sensors were made on the basis
of pure SnO2, SnO2 decorated with noble met-
als, SnO2 doped with Cr(III) and Nb(V) cations,
SnO2 modified with SiO2 over the surface, including
a sensor with combination of Au decoration and
SiO2 modification. These sensors are named
further (1) SnO2; (2) SnO2–Ru; (3) SnO2–Au;
(4) SnO2–Pd; (5) SnO2–Pt (6) SnO2–Cr–Nb;
(7) SnO2–SiO2; (8) SnO2–SiO2–Au. TiO2 based
sensors represent n-type conducting Nb(V) doped
materials with and without Au decoration, as well
as p-type conducting Cr(III) doped materials with
similar Au modification, which are named further
as (9) TiO2–Cr; (10) TiO2–Cr–Au; (11) TiO2–
Nb–Au; (12) TiO2–Nb. The materials were dis-
pensed in organic binder—ethyldiglycol acetate—
and deposited on the surface of the circular heated
area of silicon-based MEMS element with the use of
Nano-Tip HV-J microdispenser (Gesim, Germany)
(Fig. 1). After the deposition the sensing elements
were self-heated by MEMS-microheater up to 500◦C
and kept for 10 h for binder complete evaporation and
MOX porous sensing layer formation.

2.2. Gas Sensor Experiment and Data Collection

The electrical resistance of a gas sensing semi-
conductor element depends, on the one side, on the

Fig. 1. Top—schematic design of a semiconductor gas
sensor; bottom left—MEMS-microhotplate with printed
SnO2 sensing layer, fixed in TO-5 package; bottom
right—a set of four sensors, fixed on a printed circuit
board (PCB).

working temperature (due to thermal activation of
charge carriers and their transfer into the conduction
band), and on the other side—on the rate of chemical
reactions on the metal oxide surface. The first type
of contribution, if big enough, may obscure the resis-
tance changes due to gas sensor process. Thus, the
amplitude and temporal characteristics of the work-
ing temperature modulation mode of the sensing el-
ement may affect the applicability of the obtained
sensor response for a response model built within ma-
chine learning approach. To systematically study this
issue, six working temperature operating conditions
(the so-called heating dynamics) were considered in
the present study (Fig. 2):

• Two linear dynamics with different cycle
lengths—linear short (LS) and linear
long (LL);

• Two dynamics with a stepwise increase and
decrease in temperature—step up (SU) and
step down (SD);

• Two dynamics with a stepwise increase and
decrease in temperature and short-term pulsed
temperature jumps to maximum working tem-
perature, which is associated with rapid des-
orption of products of chemical interaction
from metal oxide surface—step up pulse
(SUP) and step down pulse (SDP).

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 79 Suppl. 2 2024



IDENTIFICATION OF AIR POLLUTANTS WITH THERMALLY MODULATED S733

Fig. 2. Heating dynamics and sensor responses.

To determine the optimal modulation mode of
operating temperature of gas sensors, the response
forms of the 12 sensors were collected in an atmo-
sphere of dry clean air, as well as in dry air with an
admixture of one of nine gases—CO, H2, CH4, NH3,
NO, NO2, H2S, SO2, HCOH (formaldehyde). Only
clean air or admixture of only one gas was present
in the sensor chamber at a time. Each gas has
been flown through the sensor chamber in a constant
flow mode in six different concentrations in different
consecutive periods of time. The same gas flow
program has been repeated for the each of six heating
dynamics, which were mentioned above. In each
series of measurements (Fig. 3), the experimental
setup was first purged and then a gas was supplied.
In this case, the gas concentration was maintained
constant for a certain number of heating dynamics
cycles. Each concentration value was maintained
within the same number of cycles and was repeated
twice in one series of experiments.

3. APPLICATION OF MACHINE LEARNING
METHODS

3.1. Data Preprocessing

To implement the application of machine learning
methods to the initial data (Fig. 3, left) of chemical
sensor responses, data preparation and preprocessing
was carried out, which included the following steps:

1. Converting data into the format: “1 cycle of
temperature modulation—1 pattern of a train-
ing sample.”

2. Replacing sensor response values above
1010 Ω with a fixed value of 1010Ω, and re-
sponse values below 10 Ω with a fixed value of
10 Ω.

3. Exclusion of data sections where the exper-
imental setup was purged: the first several
cycles in each experiment.

4. Elimination of the first several cycles after
changing the concentration (5 for short tem-
perature dynamics, 3 for long) and several
cycles immediately before changing the con-
centration (3 for short temperature dynamics,
2 for long) (Fig. 3, right).

5. Taking decimal logarithm of sensory response.

6. Binary encoding of classes: 0—absence of gas,
1—presence of gas.

7. Splitting the resulting data set into training
and test sets. It was carried out in a stratified
version (Fig. 3, right): from each area with a
fixed concentration of the gas in question, the
first m cycles were selected into the training set
and the subsequent n cycles were selected into
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Fig. 3. Left—the original data of sensor response, right—splitting into training and test subsets.

Fig. 4. F1-score values for random forest algorithm applied to sensor data obtained through “linear long” heating dynamic for
various gases and various sensors: Left—F1-score averaged over 5 random seeds, right—F1-score standard deviation.

the test set (m : n = 47 : 5—for short temper-
ature dynamics, m : n = 20 : 5—for long tem-
perature dynamics), then the procedure was
repeated for other sections with a fixed concen-
tration.

3.2. Statement of the Computational Experiment

In this study, we considered a binary classifica-
tion problem that involved determining the presence
of a specific gas using data from a single physical
experiment with a specific heating dynamic. In each
computational experiment, data from only one sensor

was used. So, the following number of problem state-
ments were considered:
9 determined gases * 6 heating dynamics*
*12 sensors = 648 problem statements

In each separate computational experiment, the
problem of determining presence/absence of only
one gas was solved based on the sensor resistance
values during one cycle of heating dynamics (1201
resistance values for linear long heating dynamics,
601 values for other heating dynamics).

3.3. Using Machine Learning Methods
Machine learning methods used were logistic re-

gression (without regularization and with L1 and L2
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Fig. 5. Averaged values of sensor response models performance (F1-score) for various gases and various sensors: left—
averaged over sensors, right—averaged over types of heating dynamics. Different tables contain results for different algorithms;
algorithm type is specified in the upper left corner of each table.

regularization), random forest, and gradient boosting.
Programming was carried out in Python language
using the scikit-learn (v.1.5) [22] machine learning
library. For each method a grid search was carried out
on a limited set of problems in order to find the opti-
mal training parameters. In this case, one problem
from each heating dynamics with different sensors
and gases was considered. As a result, the following

consensus parameters were chosen for all subsequent
experiments:

• Logistic regression without regularization
(LR): solver—“newton-cg”; maximum num-
ber of iterations—250; tolerance for the optimi-
zation—0.0001.

• LR with L1 regularization (LR-L1): in-
verse of regularization strength—1.0; solver—
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Fig. 6. Averaged values of sensor response models performance (F1-score): left—averaged over sensors, right—averaged over
types of heating dynamics. Top—linear regression, bottom—gradient boosting. Multiple cut-offs on the whiskers correspond
to the error values for various gases.

“liblinear” ; maximum number of iterations—
250; tolerance for the optimization—0.0001.

• LR with L2 regularization (LR-L2): inverse
of regularization strength—10.0; solver—
“lbfgs” ; maximum number of iterations—250;
tolerance for the optimization—0.0001.

• Gradient boosting (GB) over decision trees
(DT): number of DT—100; DT depth—3;
learning rate—0.01; number of features to
consider when looking for the best split in the
nodes of the DT—log2(n), where n is the total
number of features; early stopping after 250
iterations without validation loss improving;
tolerance for the early stopping—0.001.

• Random forest (RF): number of DT—50; DT
depth—2, fraction of features to consider when
looking for the best split in the nodes of the
DT—sqrt(n), where n is the total number of
features.

For each method 5 models with different random
initializations were trained in each experiment. The
application results statistics were averaged.

4. RESULTS
As an indicator of the quality of binary classifi-

cation in this study, the F1-score was considered.
Since the number of patterns corresponding to the
presence of gas is six times greater than the number
of patterns corresponding to the absence of gas, the
trivial solution model (all patterns are assigned to one
larger class) corresponds to F1-score value of 0.923.
This should be taken into account when analyzing the
following results.

For each specific problem, the solution results
were obtained by all considered machine learning
methods (an example is presented at Fig. 4). For
ease of analysis and identification of characteristic
general patterns, the obtained results were averaged
over all sensors and over all heating dynamics (Figs. 5
and 6). The observed results could be generalized in
the following points:
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• Logistic regression without regularisation per-
formed better than regression with L1 and L2
regularisation. Gradient boosting was more ef-
ficient than the decision tree algorithm. These
two algorithms—gradient boosting and logis-
tic regression without regularisation—gave re-
sults close in performance.

• Application of L1 regularisation led to the
worst performance of the response model in the
present study. Compared to the L2 regularisa-
tion, which has the second worst performance,
and which minimizes the contribution of the
weak features, the L1 regularisation makes
them null. This consideration gives rise to a
conclusion, that the task of the binary classi-
fication requires as many features of the data
sample as possible.

• SnO2-based sensors performed generally bet-
ter, than TiO2-based ones, which correlates
with their better sensitivity—higher response
values. However, application of gradient
boosting algorithm allowed to alleviate this
issue. The outlying problems with 6-th sen-
sor, made of Cr(III) and Nb(V) doped SnO2,
visible for all algorithms applied, indicate the
instability of this sensor.

• Generally reducing gases are better recog-
nized, than oxidizing ones (NO, NO2, SnO2).
While in the case of SO2 this result could be
anticipated due to very low concentrations of
this gas in the flow of dry clean air, for other
two gases this observation requires further
clarification.

• Comparison of the heating dynamics allows us
to assume that slower heating and cooling is
better than faster one (LL vs LS), heating up
gives more features, than cooling down (SU
and SUP vs SD and SDP); however, the latter
tendency is not very profound.

5. CONCLUSIONS

Based on the results of the study, the following
conclusions were made:

• Increase in the absolute value of sensor re-
sponse is beneficial for machine learning sen-
sor response model for gas presence recogni-
tion.

• Logistic regression and gradient boosting
based models are best performing, able to
compensate for poor sensor response and for
response drift over time.

• Testing of these results on the independent
datasets is required in the future studies.
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