$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	Testate amoeba diversity of the Tokai Hilly Land Spring-fed Mires, a group of poor fens on the Pacific Coast of Central Honshu, Japan
1	Satoshi D. Shimano* Anatoly Bobroy, Manfred Wanner, Mariusz Lamentowicz, Vuri
5	Mazei Taisuke Ohtsuka
6	Huzer, Fulbuke Ontouku
7	S. D. Shimano *corresponding author
8	Hosei University Fujimi Chivoda Tokyo 102-8160 Japan
9	e-mail· sim@hosei ac in
10	e mun. simulatosenae.jp
11	A Bobrov
12	Lomonosov Moscow State University, Leninskive gory 1, Moscow 119991, Russia
13	
14	M. Wanner
15	Brandenburg University of Technology Cottbus, Senftenberg, Depertment of Ecology, D-
16	03044 Cottbus, Germany
17	
18	M. Lamentowicz
19	Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological
20	Sciences, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
21	Department of Biogeography and Paleoecology, Adam Mickiewicz University,
22	Dzięgielowa 27, 61-680 Poznań, Poland
23	
24	Yu. Mazei
25	Department of Hydrobiology, Lomonosov Moscow State University, Leninskiye gory 1,
26	Moscow 119991, Russia
27	Department of Zoology and Ecology, Penza State University, Krasnaya 40, Penza 440026,
28	Russia
29	
30	T. Ohtsuka
31	Research Division, Lake Biwa Museum, Shiga, 525-0001 Japan
32	

Abstract We present a short note on the species composition of testate amoebae in Tokai Hilly Land Spring-fed Mires, a group of poor fens. Totally 39 species and 6 subspecies belonged to 21 genera and 14 families of testate amoebae were recorded. Eight species and nine subspecies are newly recorded from Japan. However, most species from the list can be considered as distributed worldwide and associated mostly to oligotrophic/acid *Sphagnum* conditions.

38

Keywords: testate amoebae, mineral soil fens, new record to Japan, Sphagnum, Rhizaria,
 Amoebozoa, Stramenopiles

- 41
- 42
- 43

44 Running title: Testate amoeba diversity of poor fens, Japan

- 45
- $\frac{46}{47}$
 - .

48 Introduction

Peatland scientists have paid relatively little attention to poor fens, especially in Asian
countries. Poor fens are peatlands in which the vegetation is fed by minerotrophic water
(surface- or ground-water-fed), the water possesses a low pH and is poor in nutrients.
Vegetation of poor fens consists of vascular plants (e.g. *Carex* spp.) and *Sphagnum* spp.

53In Central to Western Honshu, Japan, peat mosses (Sphagnum spp.) usually occur on 54mineral soil with little or no peat accumulation. Such fens, usually dominated by *Rhynchospora* 55spp., Eriocaulon spp. and Utricularia spp., are defined as wet grasslands on mineral soil by Tomita (2010). They have been neglected by researchers despite their occurrence near human 5657dwellings, but recently their ecological importance have been increasingly recognized.—The 58Tokai Hilly Land Spring-fed Mires, a group of poor fens on the Pacific coast of Central Honshu, 59were inscribed as a registered wetland under the Ramsar Convention in July, 2012. This was the 60 first registration of a poor fen on mineral soil as a Ramsar wetland in Japan. In addition, poor 61 fens on mineral soil are potentially interesting as geological and archaeological study sites, 62 because most of them seem to have been strongly affected by human activities (Tomita 2010). 63 Basic ecological knowledge about poor fens in Japan is, however, still scant except concerning 64 the vegetation itself (e.g., Hada 1984; Tomita 2010).

Among the different sorts of poor fens on mineral soil, a "hillside-slope type" is frequently 6566 observed that develops on a slope watered by a divergent flow of spring water seeping from the 67 upper part of the slope (Tomita 2010). Such fens are usually situated atop granite or rhyolite 68 (Hada 1984; Tomita 2010), and their vegetation is often dominated by Sphagnum palustre L., 69 despite the lack of the ombrotrophic (rain-fed) and strongly acidic conditions typical of Sphagnum bogs under openforest of Japanese cider Cryptomeria japonica (Thunb. ex L.f.) 7071D.Don. Such fens appear not to be covered by the classification system of wetlands developed 72in Europe (cf. Succow and Jeschke 1986; Hotes 2007).

73 Testate amoebae (Rhizaria, Amoebozoa and Stramenopiles; Adl et al. 2012) commonly 74 inhabit mosses including Sphagnum. They are known as good environmental indicators of 75hydrology (Mitchell et al. 2008), acidity and calcium concentration (Opravilová and Hajek 2006), Pb-loading (Nguyen-Viet et al. 2007, 2008), and other environmental parameters (e.g., 76 77 Wanner 1999). In addition, they are also useful as bioindicators of past environmental changes 78because their thecae often remain in the sediment as fossils and allow species-level 79identification (Tolonen 1986; Payne et al. 2012; Lamentowicz et al. 2015). Testate amoeba 80 assemblages on Sphagnum have been well studied in bogs (e.g., Jassey et al. 2011; 81 Lamentowicz et al. 2013; Qin et al 2013; Marcisz et al. 2014; Amesbury et al. 2016) and 82 minerotrophic peatlands (e.g. Lamentowicz et al. 2010, 2011; Jassey et al. 2014), but there 83 appear not to be any studies of the testate amoebae of *Sphagnum* fens on mineral soil, probably 84 because this kind of habitat is rare in Europe.

This is the first report of testate amoeba assemblage on *Sphagnum* in a hillside-slope type poor fen developed on mineral soil. We aim to contribute to the ecological understanding of such fens, which have been neglected but are not rare in Central to Western Honshu. The present study also provides a basis for paleoenvironmental studies of such fens as sites of archaeological interest.

90

91 Materials and methods

The sampling site was a hillside-slope type poor fen dominated by *S. palustre* among an open forest of *Cryptomeria japonica* (Thunb. ex L.f.) D.Don, located in Koka City, Shiga prefecture in west-central Honsyu, Japan (34.917°N, 136.083°E), at an altitude of 281 m (Fig. 1). The samples were collected in 20 February, 2012 by Satoshi Shimano (the author). The *Sphagnum* moss of the uppermost 5 cm were sampled in several points of the fen. Testate amoebae were extracted from a 5 cm³ quota taken from each sample irrespectively of the nature of the habitat in accordance with the method described in Mazei and Chernyshov (2011). The 99 specimens were studied using light microscopy. The higher taxa of testate amoeba were arranged according to Meisterfeld (2000a, b), Adl *et al.* (2012) and Siemensma (2016) and annotations based on Shimano and Miyoshi (2008) were added to species list.

102

119

128

 $\begin{array}{c} 129 \\ 130 \end{array}$

 $\frac{131}{132}$

133

 $\begin{array}{c} 134 \\ 135 \end{array}$

136

 $\frac{137}{138}$

 $\begin{array}{c} 139\\ 140 \end{array}$

141

103 **Results**

- 104
- 105 Species list
- 106 Totally 40 species and 6 subspecific taxa from 21 genera, 14 families of testate amoebae were
- 107 recorded. 8 species and 9 subspecific taxa are newly recorded from Japan.
- 108 List of taxa (* new to Japan)
- 109 AMOEBOZOA Lühe, 1913 emend. Cavalier-Smith, 1998
- 110 TUBULINEA Smirnov, Nassonova, Berney, Fahrni, Bolivar & Pawlowski, 2005
- 111 TESTACEALOBOSIA de Saedeleer, 1934
- 112 ORDER ARCELLINIDA Kent, 1880
- 113 SUBORDER ARCELLINA Haeckel, 1894
- 114 FAMILY ARCELLIDAE Ehrenberg, 1843
- 115 Genus Arcella Ehrenberg, 1832
- 116 1. Arcella discoides Ehrenberg, 1871
- 117 2. Arcella discoides foveosa Playfair, 1918 *
- 118 3. *Arcella* sp.

120 SUBORDER DIFFLUGINA Meisterfeld, 2000

- 121 FAMILY DIFFLUGIIDAE Wallich, 1864
- 122 Genus Difflugia Leclerc, 1815
- 1234. Difflugia bacillifera Pénard, 1890
- 124 5. *Difflugia globulosa* Dujardin, 1837
- 125 6. *Difflugia globulus* (Ehrenberg, 1848)
- 1267. Difflugia oblonga Ehrenberg, 1838127
 - Genus Wailesella Deflandre, 1928
 - 8. Wailesella eboracensis (Wailes and Pénard, 1911) Deflandre, 1928
 - FAMILY CENTROPYXIDAE Jung, 1942
 - Genus Centropyxis Stein, 1857
 - 9. Centropyxis aculeata (Ehrenberg, 1838) Stein, 1857
 - 10. Centropyxis aculeata dentistoma Decloître, 1949 *
 - 11. Centropyxis aculeata minima van Oye, 1938 *
 - 12. Centropyxis constricta (Ehrenberg, 1843) Deflandre, 1929
 - 13. Centropyxis sylvatica (Deflandre, 1929) Bonnet & Thomas, 1955
 - FAMILY PLAGIOPYXIDAE Bonnet and Thomas, 1960 Genus *Bullinularia* Deflandre, 1953
 - 14. Bullinularia indica (Pénard, 1907) Deflandre, 1953 *
- 142143FAMILY HYALOSPHENIIDAE Schultze, 1877144Genus Hyalosphenia Stein, 185914515. Hyalosphenia insecta Harnisch, 1938 *
- 146 16. *Hyalosphenia papilio* (Leidy, 1874) Leidy, 1879
- 147148FAMILY HELEOPERIDAE Jung, 1942140
- 149Genus Heleopera Leidy, 1879

150	17. Heleopera petricola amethystea Pénard, 1899 *
151	18. Heleopera rectangularis Bonnet, 1966 *
152	
153	FAMILY NEBELIDAE Taránek, 1882
154	Genus Nebela Leidy, 1874
155	19. Nebela barbata (Leidy, 1874)
156	20. Nebela marginata Pénard, 1902 **
157	21. Nebela parvula Cash, 1909
158	22. <i>Nebela</i> sp. 1
159	
160	Genus Porosia Jung, 1942
161	23. Porosia biggibosa (Pénard, 1890) Jung, 1942
162	
163	Genus Argynnia Vucetich, 1974
164	24. Argynnia sp.
165	
166	Genus Physochila Jung, 1942
167	25. Physochilla griseola (Pénard, 1911) Jung, 1942
168	
169	SUBORDER PHRYGANELLINA Bovee, 1985
170	FAMILY CRYPTODIFFLUGIIDAE Jung, 1942
171	Genus Cryptodifflugia Pénard, 1890
172	26. Cryptodifflugia oviformis Pénard, 1890
173	27. Cryptodifflugia oviformis fusca Bonnet & Thomas, 1955 *
174	
175	SUBORDER PHRYGANELLINA Bovee, 1985
176	FAMILY PHRYGANELLIDAE Jung, 1942
177	Genus Phryganella Pénard, 1902
178	28. Phryganella acropodia australica Playfair, 1917 *
179	
180	RHIZARIA Cavalier-Smith, 2002
181	CERCOZOA Cavalier-Smith, 1998
182	SILICOFILOSEA Adl et al., 2005
183	ORDER EUGLYPHIDA Copeland, 1956
184	SUBORDER EUGLYPHINA Kosakyan et al., 2016
185	FAMILY EUGLYPHIDAE Wallich, 1864
186	Genus Euglypha Dujardin, 1841
187	29. Euglypha compressa glabra Cash, Wailes & Hopkinson, 1915 *
188	30. Euglypha cuspidata Bonnet, 1959 *
189	31. Euglypha laevis Perty, 1849
190	32. Euglypha tuberculata Durjardin, 1841
191	
192	FAMILY ASSULINIDAE Lara et al., 2007
193	Genus Assulina Leidy, 1879
194	33. Assulina muscorum Greeff, 1889
195	34. Assulina seminulum (Ehrenberg, 1848) Leidy, 1879
196	35. Assulina scandinavica Pénard, 1890 *
197	
198	Genus Placocista Leidy, 1879
199	36. Placocista spinosa (Carter, 1865) Leidy, 1879
200	

201	Genus Valkanovia Tappan, 1966
202	37. Valkanovia elegans (Schönborn, 1964) Tappan, 1966 *
203	
204	FAMILY SPHENODERIIDAE Chatelain et al., 2013
205	Genus Sphenoderia Schlumberger, 1845
206	38 Sphenoderia splendida (Playfair 1918)
207	
208	FAMILY TRINEMATIDAE Hoogenraad & de Groot, 1940
209	Genus <i>Trinema</i> Dujardin. 1841
210	39. Trinema complanatum Pénard, 1890
211	40 Trinema lineare Pénard 1890
212	41 Trinema lineare minuscula Chardez 1971 *
213	
214	Genus Corvthion Taránek 1881
215	42 Corvition dubium Taránek 1882
216	43 Corvition dubium orbicularis Pénard 1911 *
217	44 Trachelocorythion nulchellum (Pénard, 1890) Bonnet, 1979 *
218	The Trachelocorymon patenetium (Tenard, 1090) Donnet, 1010
219	STRAMENOPILES Patterson 1989 emend Adl et al 2005
220	LABYRINTHULOMYCETES Dick 2001
221	ORDER AMPHITREMIDA Poche1913
222	FAMILY AMPHITREMIDAE Poche 1913
223	Genus Amphitrema Archer 1869
224	45. Amphitrema wrigthianum Archer, 1869
225	
226	
227	Discussion
228	Based on only a few samples from one sampling date, already 45 taxa of testate amoebae were
229	found, of which 17 species or subspecies are new records for Japan. This finding reveals an
230	unexpected high diversity for this type of poor fen from Japan. A study conducted in several
231	Sphagnum-dominated peatlands from north-western Poland revealed 52 species from 44
232	samples (Lamentowicz and Mitchell 2005).
233	Most of the species represent acidic conditions of <i>Sphagnum</i> bog. Testate amoebae
234	species composition resembles typical ombrotrophic bog, despite they are located in the
235	mesotrophic conditions. There are mixotrophic species present such as: Archerella flavum and
236	Hyalosphenia papilio that represent more open parts of the Sphagnum patches (Payne et al
237	2016). There were no clear indicators of a rich fen, so we can assume that the habitat is
238	generally poor of nutrients, however taxa Centropyxis spp might representing a higher
239	nutrient status. Next study will better characterize communities structure and abundance of each
240	species.
241	In the present study, all determined genera and almost all species are characterized
242	by uniquely defined tests, thus a misidentification can be excluded. However, Valkanovia
243	elegans cannot be distinguished from Assulina muscorum (type 4), but Valkanovia can inhabit
244	both upper and lower horizons, whereas Assulina and its forms lives exclusively in the upper
245	horizon layer (Schönborn and Peschke 1990). Most species from the list can be considered as
246	cosmopolitan. However, in the Imperial Palace area, Tokyo, Shimano et al. (2014) found two
247	species with limited geographical distribution (<i>Centropyxis latideflandriana</i> and

species with limited geographical distribution (*Centropyxis latideflandriana* and *Planhoogenraadia daurica*), thus more species with geographical limitation can be expected for 248

249the future in Japan. Moreover, there will be a considerable amount of new or unrecorded testate

250amoeba taxa for Japan, the assumption is borne out by recent research papers (Aoki et al. 2007;

251Bobrov et al. 2012; Shimano et al. 2014; Bobrov and Kosakyan 2015) and bibliographies

- (Shimano and Miyoshi 2008, Shimano et al., in prep.). These few studies already resulted in
 more than 350 species, including three species new for science (Bobrov et al. 2012; Bobrov and
- 254 Kosakyan 2015).
- 255

In suppl. Tab. A, some environmental data are given. pH as a major environmental factor is still in the range as discussed by Lamentowicz and Mitchell (2005).

- $\begin{array}{c} 258\\ 259 \end{array}$
- 209
- 260
- 261
- 262
- $\begin{array}{c} 263\\ 264 \end{array}$
- 264 265
- 266

267 Acknowledgements

We thank to Dr. Ralph Meisterfeld (Institute of Biology II (Zoology) RWTH-Aachen) for their valuable comments. This research was partly supported by the JSPS KAKENHI (grant numbers 15H02858) to SS & TO, the grant of the Russian Science Foundation (14-14-00891) and the

- 271 grant of the President of Russian Federation (MD-7930.2016.4) to YuM.
- 272

273 **References**

- Adl S. M., Simpson A. G. B., Lane C. E., Lukeš J., Bass D., Bowser S. S., Brown M. W., Burki
 F., Dunthorn M., Hampl V., Heiss A., Hoppenrath M., Lara E., le Gall L., Lynn D. H.,
 McManus H., Mitchell E. A.D., Mozley-Stanridge S. E., Parfrey L. W., Pawlowski J.,
 Rueckert S., Shadwick L., Schoch C. L., Smirnov A., Spiegel F. W., (2012) The revised
 classification of eukaryotes. *J. Eukaryot. Microbiol.* 59: 429–493
- Amesbury, M. J., Swindles, G. T., Bobrov, A., Charman, D. J., Holden, J., Lamentowicz, M.,
 Mallon, G., Mazei, Y., Mitchell, E. A. D., Payne, R. J., Roland, T. P., Turner, T. E.,
 Warner, B. G., 2016. Development of a new pan-European testate amoeba transfer
 function for reconstructing peatland palaeohydrology. *Quaternary Sci. Rev.* 152: 132151.
- Aoki Y., Hoshino M., Matsubara T. (2007) Silica and testate amoebae in a soil under pine–oak forest. *Geoderma* 142: 29-35
- Bobrov A., Kosakyan A. (2015) A new species from mountain forest soils in Japan: *Porosia paracarinata* sp. nov., and taxonomic concept of the genus *Porosia* Jung, 1942. *Acta Protozool.* 54: 289–294
- Bobrov A., Shimano S., Mazei Y. (2012) Two new species of testate amoebae from the
 mountain forests soils of Japan and redescription of the genus *Deharvengia* Bonnet,
 1979. Acta Protozool. 51: 55–63
- Hada Y. (1984) Phytosociological studies on the moor vegetation in the Chugoku District, S.W.
 Honshu, Japan. *Bull. Hiruzen Res. Inst.* 10: 73–110
- Hotes S. (2007) Shitsugen seitaikei no tayosei sono bunrui to hozen saisei (Diversity of
 wetland ecosystems classification, conservation and restoration). *Chikyu Kankyo* 12:
 296 21–36 (In Japanese)
- Jassey V. E., Shimano S., Dupuy C., Toussaint M. L., Gilbert D. (2012) Characterizing the
 feeding habits of the testate amoebae *Hyalosphenia papilio* and *Nebela tincta* along a
 narrow "fen-bog" gradient using digestive vacuole content and ¹³C and ¹⁵N isotopic
 analyses. *Protist* 163: 451–464
- Jassey V. E., Lamentowicz Ł., Robroek B. J., Gąbka M., Rusińska A., Lamentowicz M. (2014)
 Plant functional diversity drives niche-size-structure of dominant microbial consumers along a poor to extremely rich fen gradient. J. Ecol. 102: 1150–1162
- Lamentowicz M., Gałka M., Obremska M., Kühl N., Lücke A., Jassey V. E. J. (2015)
 Reconstructing climate change and ombrotrophic bog development during the last
 4000years in northern Poland using biotic proxies, stable isotopes and trait-based
 approach. *Palaeogeograph. Palaeoclimatol. Palaeoecol.* 418: 261–277
- Lamentowicz M., Bragazza L., Buttler A., Jassey V. E. J., Mitchell E. A. D. (2013) Seasonal
 patterns of testate amoeba diversity, community structure and species–environment
 relationships in four *Sphagnum*-dominated peatlands along a 1300 m altitudinal gradient
 in Switzerland. *Soil Biol. Biochem.* 67: 1-11
- Lamentowicz Ł., Gąbka M., Rusińska A., Sobczyński T., Owsianny P. M., Lamentowicz M.
 (2011) Testate Amoeba (Arcellinida, Euglyphida) Ecology along a Poor-Rich Gradient
 in Fens of Western Poland. *Internat. Rev. Hydrobiol.* 96: 356–380
- Lamentowicz M., Lamentowicz Ł., van der Knaap W. O., Gąbka M., Mitchell E. A. D. (2010)
 Contrasting species—environment relationships in communities of testate amoebae,
 bryophytes and vascular plants along the Fen–Bog gradient. *Microbial Ecol.* 59: 499–
 510
- Lamentowicz M., Mitchell E. A. D. (2005) The ecology of testate amoebae (protists) in
 Sphagnum in north-western Poland in relation to peatland ecology. *Microbial Ecol.* 50:
 48-63
- 322 Marcisz K., Fournier B., Gilbert D., Lamentowicz M., Mitchell E. A. D. (2014) Response of 323 *Sphagnum* peatland testate amoebae to a 1-year transplantation experiment along an

324	artificial hydrological gradient. Microbial Ecol. 67: 810–818
325	Mazei Yu., Chernyshov V. A. (2011) Testate amoebae communities in the southern tundra and
326	forest-tundra of Western Siberia. Biol. Bull. 38: 789-796
327	Meisterfeld R. (2000a) Order Arcellinida Kent, 1880. In: The Illustrated Guide to the Protozoa
328	vol. 2, 2nd ed, (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). Allen press Inc, Kansas,
329	USA. 827–860
330	Meisterfeld R. (2000b) Testate amoebae with filopodia. In: The Illustrated Guide to the
331	Protozoa vol. 2. 2nd ed. (Eds. J. J. Lee, G. F. Leedale, P. Bradbury). Allen press Inc.
332	Kansas, USA, 1054–1084
333	Mitchell E A D Charman D J Warner B G (2008) Testate amoebae analysis in ecological
334	and paleoecological studies of wetlands: past present and future <i>Biodiv Conserv</i> 17.
335	2115–2137
336	Nguven-Viet H Bernard N Mitchell E A D Badot P -M Gilbert D (2008) Effect of lead
337	nollution on testate amoebae communities living in Snhagnum fallar: an experimental
338	study Ecotoxical Environ Safety 69. 130–138
339	Nouven-Viet H Bernard N Mitchell F A D Cortet I Badot P-M Gilbert D (2007)
340	Relationship between testate amoeba (Protist) communities and atmospheric heavy
940 941	metals accumulated in <i>Barbula indica</i> (Bryonbyta) in Vietnam <i>Microb Ecol</i> 53 : 53–65
349	Opravilová V Hajek M (2006) The variation of testacean assemblages (Rhizonoda) along the
3/3	complete baserichness gradient in fens: a case study from the Western Carnathians Acta
344	Protozool 45: 101_204
345	Payne R. Lamentowicz M. Knaan P. van der Leeuwen I. van Mitchell F. A. D. Mazei Vu
346	(2012) Testate amoebae as non pollen palynomorphs. <i>Bay Palacobat Palynol</i> 173:
247	(2012) Testate amoedae as non-ponen parynomorphs. <i>Rev. 1 atdeodol. 1 atynol.</i> 175.
348	Davine P. Greevy A. Malychava F. Rateliffe I. Andersen R. Tsyganov A. Rowson I.
240	Maroisz K. Ziolinska M. Lamontowicz M. Lanshina E. Mazoi Vu. (2016) Troa
250	anaroachment may lead to functionally significant changes in postland testate amoche
251	communities. Soil Riol Riocham 09: 18-21
352	Oin V M Mitchell E A D Lamentowicz M Payne R I Lara E Gu V S Huang Y V
252	Wang H. M. (2012) Ecology of testate amoshes in postlands of control China and
254	development of a transfer function for palacehydrological reconstruction I
355	Palaolimnol 50 : 310, 330
356	Schönhorn W. Deschke T. (1000) Evolutionary studies on the Assuling Valkanovia complex
357	(Phizopode Testacoofilesia) in Sphagnum and soil Riel Fartil Soil 0: 05, 100
258	(Kilizopoua, Testaccarilosia) ili <i>Spriagram</i> alla soli. <i>Diol. Tertit. Soli</i> 9, 95–100 Shimano S. Miyoshi N. (2008) A hibliography of publications on free living protects (ciliates
350	and testate amoshes) recorded from Japan proliminary version April 2008 Int.
360	Protozool = 41: 122 152 (In Japaneso) (Undeted version May 2010; https://
361	sites google com/site/bibliographyiapan)
369	Shirano S. Bohray A. Mazai V. (2014) Tastata amaahaa of the Imparial Palaca. Takwa Mam
004 969	Natl Mus Nat Sci Tolmo 50: 21 29
202 264	Null. Mus. Null. Sci. 10kyo 50. 21-26 Siemeneme F. J. (2016) Microworld, world of emochaid expensions. World wide electronic
304 265	stemensina F. J. (2010) Microwolla, wolla of antoebola organisms. Wolla-wide electronic
366	Oct. 28, 2016)
367	Success M. Josephys I. (ad) (1086) Moore in der Landschaft Entstehung Haushalt Lahawalt
201	Succow M., Jeschke L. (ed) (1960) Moore III del Landschaft – Entstehung, Haushaft, Lebewert, Verbreitung, Nutzung und Erbeltung der Moore, UDANIA Verleg Leinzig, Jone, Perlin
260	Telepen K (1086) Discond analysis In: Handbook of Helesene pelacecelegy and
369 270	rolonen K. (1986) Knizopou analysis. III. Handbook of Holocene palaeoecology and
∂/U 971	paraeonydiology (Eu D. E. Bergiund). John Wiley, Unichester, $645-66$
071 970	Ionnia K. (2010) Distribution, formation, and classification of wet grassiand on mineral soils in Ionon Wetland Pag. 1: 67–86 (In Janancee)
014 979	Japan. Wellulla Kes. 1. $0/-00$ (III Japanese) Wannar M. (1000) A rayiow on the variability of testate amaghas, mathedalagies, arrested as
२१२ १७४	wanner Wi. (1999) A review on the variability of testate amoedae: methodological approaches,
374	environmental influences and taxonomical implications. Acta Protozool. 38: 15–29

Environmental factors	value	
Water temperature °C	8.0	
рН	5.7	
EC mS/m	2.5	
NH₄-N μM	0.54	
NO ₂ -N μM	0.20	
NO ₃ -N µM	6.07	
PO ₄ -P μM	0.02	
TDN μM	13.09	
TDP µM	0.10	
Si mg/L	3.693	
F mg/L	N.D	
Cl mg/L	1.576	
Br mg/L	N.D	
SO4 mg/L	1.498	
Li mg/L	0.008	
Na mg/L	1.087	
K mg/L	0.380	
Mg mg/L	0.038	
Mn mg/L	N.D	
Ca mg/L	0.043	

416 Supplemental table A list of data of the water sample and environments, collected in the 417 sampling site of the Tokai Hilly Land Spring-fed Mires

418

419Electric conductivity (EC) and pH were checked at site with a B-173 conductivity meter 420 (Horiba, Kyoto, Japan) and a B-212 pH meter (Horiba, Kyoto, Japan), respectively. Water temperature was measured with an alcohol thermometer. Water samples for water analyses in 421422 the laboratory were filtered by syringe-driven filter units with 0.22 µm pore size hydrophilic 423Polyethersulfone (PES) membrane. Each water sample was partly kept in a refrigerator (for SRSi determination) and the rest in a freezer (for the other analyses). In the laboratory, major 424anions and cations were analyzed by ion column chromatography (DX-AQ: Nippon Dionex, 425426Osaka, Japan). SRSi, SRP, NH4-N, NO2-N, and NO3-N were colorimetrically determined 427 using an autoanalyzer (AACS-II: Bran + Luebbe, Tokyo, Japan).