
Formulation of the initial boundery velue problems in the theory of
multilayer thermoelastic thin bodies in moments (part I)

Mikhail U. Nikabadze, Tamar Moseshvili, Armine R. Ulukhanian, Ketevan Tskhakaia,
Nodar Mardaleishvili

Abstract: In the paper the new parametrization of a multilayer thin domain
is applied. In contrast with classic approaches, several base surfaces and an
analytic method with application of orthogonal polynomial systems are used.
Geometric characteristics typical for the proposed parametrizations are con-
sidered. The new parametrization in the case of a one-layered thin body is
described in detail in [5–10]. Various representations of the equations of mo-
tion, the heat influx, the constitutive relations of physical and heat content
are given for the new body domain parametrization. The definition of the kth
order moment of a certain quantity with respect to an orthonormal polynomial
systems is given. The expressions of moments of first- and second-order partial
derivatives of a certain tensor field are obtained and this is also done for some
important expressions required for constructing different variants of the theory
of thin body. Various variants of the equations of motion in moments with
respect to orthogonal polynomial systems are also obtained. The interlayer
conditions are written down under various connections of adjacent layers of a
multilayer body. Formulation of the initial boundery velue problems in the
theory of multilayer thermoelastic thin bodies in moments are given.

1. Parametrization of a multilayer thin domain of the three-dimensional Eu-

clidean space with several base surfaces

Consider a multilayer thin domain of the Euclidean space consisting of not more than count-

ably many layers. We perform the parametrization of this domain in the same way as in [1,2].

Let the layers be enumerated in the ascending order, i.e., for example, if α ≥ 2 is the serial

number of a certain layer, then the serial number of the previous layer is α−1 and the serial

number of the next layer is α + 1. Each layer has two frontal surfaces. The frontal surface

of the layer α, which lies to the side of the previous layer α − 1, is called the interior base

surface and denoted by
(−)

S
α

, whereas the frontal surface of the layer α, which lies to the side

of the next layer α+ 1, is called the exterior base surface and denoted by
(+)

S
α

.

If the multilayer structure consists of K layers, then
(−)

S
1

(
(+)

S
1

) and
(−)

S
K

(
(+)

S
K

) are the interior

and exterior surfaces of the first and last layers, respectively. In this case,
(−)

S
1

and
(+)

S
K

are

also called the interior and exterior surfaces of the multilayer structure.



We assume that the frontal surfaces of each layer are regular surfaces and its lateral

surface is a ruled surface in the case where the layer is bounded and unclosed.

Note that the analytic method with the use of the Legendre polynomial system in con-

structing the one-layer thin body theory [11–39] and multilayer thin body theory [40–49]

was also applied by other authors. In this direction the author had published the pa-

pers [1–8, 50–59] and others with the application of Legendre and Chebyshev polynomial

systems. These expansions can be successfully used in constructing any thin body theory.

Despite this, the classic theories constructed by this method are far to be complete, and the

more so, the micropolar theories and theories of other rheology are.

1.1. Vector parametric equation of the layer α and the system of vector para-

metric equations of a multilayer thin domain

The radius-vector of an arbitrary point M
α

of the layer α has the form

r
α
(x1, x2, x3) =

(−)
r
α

(x1, x2) + x3h
α

(x1, x2) = (1− x3)
(−)
r
α

(x1, x2) + x3(+)
r
α

(x1, x2) (1)

for all α ∈ N and ∀x3 ∈ [0, 1], where the vector relations

(−)
r
α

=
(−)
r
α

(x1, x2),
(+)
r
α

=
(+)
r
α

(x1, x2), α ∈ N, (2)

are the vector equations of the base surfaces
(−)

S
α

and
(+)

S
α

, respectively, x1, x2 are curvilinear

(or Gaussian) coordinates on the interior base surface
(−)

S
α

, and N is the set of natural numbers.

The vector h
α

(x1, x2) =
(+)
r
α

(x1, x2) −
(−)
r
α

(x1, x2), which topologically maps the interior base

surface
(−)

S
α

onto the exterior base surface
(+)

S
α

, in general, is not orthogonal to the base surfaces,

and, moreover, the endpoint of each h
α

(x1, x2) is the initial point of h
α+1

(x1, x2), ∀α, i.e., the

following relation holds:

(+)
r
α+δ

(x1, x2)=
(−)
r
α

(x1, x2)+
α+δ∑
ν=α

h
ν

=
(+)
r
α

(x1, x2) +
α+δ∑
ν=α+1

h
ν

=
(−)
r
α

(x1, x2)

+
α+δ∑
ν=α

[
(+)
r
ν

(x1, x2)−
(−)
r
ν

(x1, x2)
]

=
(+)
r
α

(x1, x2)+
α+δ∑
ν=α+1

[
(+)

r
ν

(x1, x2)−
(−)

r
ν

(x1, x2)
]
, ∀α, δ.

(3)

Let a multilayer domain1 consist of K layers. Then introducing the notation

1We use the usual rules of tensor calculus [9,10,60–63]. We mainly preserve the notation
and conventions of the previous works. Under symbols, we write indices denoting the serial
numbers of layers . The Greek indices under symbols assume their values according to
circumstances, and capital and small Latin indices assume the values 1, 2 and 1, 2, 3,
respectively. A record of the form (I: 24) means a reference to formula (24) from the first
part of the paper, and (II: 26) means a reference to formula (26) from the second part of the
work.



h =

K∑
ν=1

h
ν

=

K∑
ν=1

[
(+)
r
ν

(x1, x2)−
(−)
r
ν

(x1, x2)
]
, (4)

we have

(+)
r
K

(x1, x2) =
(−)
r
1

(x1, x2) + h(x1, x2) =
(−)
r
1

(x1, x2) +

K∑
ν=1

[
(+)
r
ν

(x1, x2)−
(−)
r
ν

(x1, x2)
]
. (5)

Note that Eq. (1) is the vector parametric equation of the layer α for a fixed α, and when α

varies in the corresponding range and conditions (3) hold, the system of vector parametric

equations of the multilayer thin domain considered. It is easy to see that (1) for any x1, x2

and x3 = 0 defines the interior base surface
(−)

S
α

, and for any x1, x2 and x3 = 1, it defines

the exterior lateral surface

α
(+)

S , whereas for any x1, x2 and x3 = const,where x3 ∈ (0, 1), it

defines the equidistance surface for the base surfaces
(−)

S
α

and
(+)

S
α

, which is denoted by S
α
.

1.2. Two-dimensional families of bases and the families of parametrizations of

the surface of the layer α generated by them

For the derivatives of relations (1) and (2) in xP at the points
(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅,+} ∀α,

let us introduce the notation

r
αP
≡ ∂P r

α
≡ ∂

P
r
α
/∂xP , r

α
?
P
≡ ∂

P

(?)
r
α
≡ ∂

(?)
r
α
/∂xP , ? ∈ {−,+}, ∀α. (6)

The pair of vectors r
α
?
1

r
α
?
2
, ? ∈ {−, ∅,+} ∀α defined at the points

(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅,+},

∀α obviously compose two-dimensional covariant surface bases, and
(?)

M
α

r
α
?
1

r
α
?
2
, ? ∈ {−, ∅,+}

∀α are two-dimensional covariant surface frames, which, in turn, generate the corresponding

parametrizations of the surfaces considered. As is known [60–63] (see also [9,10]), according

to these frames (bases), we can construct the corresponding contravariant frames
(?)

M
α

r
α

?
1 r
α

?
2

(bases r
α

?
1 r
α

?
2), ? ∈ {−, ∅,+}, ∀α. Naturally, the covariant and contravariant bases generate

the geometric characteristics inherit for them. Defining the frames (bases) at each point of

the surfaces
(?)

S
α

, ? ∈ {−, ∅,+}, ∀α, we obtain the corresponding families of frames (bases),

which, in turn, generate the corresponding parametrizations.

1.3. Three-dimensional families of bases and the families of parametrization of

the domain of the layer α generated by them

Taking into account the expression of the radius-vector r
α

(1) in the first relation in (6) and

introducing the notation h
αP
≡ ∂h/∂xP ≡ ∂

P
h
α

, we obtain

r
αP

= r
α
−
P

+ x3h
αP

= (1− x3)r
α
−
P

+ x3r
α

+
P
, ∀α. (7)



Now, differentiating (1) in x3, we have

r
α3 ≡ ∂3 r

α
≡ ∂r

α
/∂x3 = h

α
(x1, x2), ∀x3 ∈ [0, 1], ∀α. (8)

According to (8), we assume that

r
α
−
3
≡ r
α3 ≡ r

α
+
3
≡ ∂3 r

α
= h

α
(x1, x2), ∀x3 ∈ [0, 1], ∀α. (9)

Relation (9) allows us to define the spatial covariant bases r
α
?
p
, ? ∈ {−, +}, ∀α at the points

(?)

M
α
∈

(?)

S
α

, ? ∈ {−, +}, ∀α, respectively. Therefore, the third basis vector of the spatial

covariant bases at the points
(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅, +}, for each layer α is the same vector

h
α

(x1, x2). In view of (9), we can join relations (7)and (8) and represent them as

r
α
p = r

α
−
p

+ x3h
α
p = (1− x3)

(−)
r
α

−
p

+ x3(+)
r
α

+
p
, ∀α. (10)

The triples of vectors r
α
?
1

r
α
?
2

r
α
?
3
, ? ∈ {−, ∅,+}, ∀α defined at the points

(?)

M
α
∈

(?)

S
α

, ? ∈

{−, ∅,+}, ∀α obviously compose three-dimensional covariant spatial bases, and
(?)

M
α

r
α
?
1

r
α
?
2

r
α
?
3
,

? ∈ {−, ∅, +}, ∀α compose three-dimensional spatial covariant frames, which, in turn,

generate the corresponding parametrizations. As is known [9, 10, 60–62], according to these

frames(bases), we can construct the corresponding contravariant frames
(?)

M
α

r
α

?
1r
α

?
2r
α

?
3 (bases

r
α

?
1r
α

?
2r
α

?
3), ? ∈ {−, ∅, +}, ∀α. Indeed, by their definition [9, 10,60–62], we have

r
α

k̃ =
1

2

(∼)

C
α

k̃p̃q̃r
αp̃
× r
αq̃
, ∼ ∈ {−, ∅,+}, ∀α, (11)

where
(∼)

C
α

k̃p̃q̃ = (r
α

k̃ × r
α

p̃) · r
α

q̃, ∼ ∈ {−, ∅,+}, ∀α, are contravariant components of the

discriminant tensors [60] of the layer α at the points
(?)

M
α
∈

(?)

S
α

, ? ∈ {−, ∅,+}, ∀α. It is easy

to see that (10) is shortly represented in the form

r
α
p = g

α

?
q
p
r
α
?
q

= g
α
p
?
q
r
α

?
q, ? ∈ {−, +}, ∀α, (12)

where we have introduced the notation

g
αp̆q̃

= r
αp̆
· r
α
q̃, g

α

q̃

p̆
= r
αp̆
· r
α

q̃, ` ∈ {−, ∅,+}, ∼ ∈ {−,+}, ∀α. (13)

in view of (10) and (13), for g
α
pq̃

and g
α

q̃
p

, we have

g
α
pq̆

= (1− x3)g
α
−
pq̆

+ x3g
α
+
pq̆
, g

α

q̆
p

= (1− x3)g
α

q̆
−
p

+ x3g
α

q̆
+
p
, ` ∈ {−, +}, ∀α. (14)



Also, it is easy to obtain the expressions for g
α
pq

. Indeed, by (12) and (14), we have

g
α
pq

= r
α
p ·r
α
q = (1−x3)2g

α
−
p
−
q

+x3(1−x3)(g
α
−
p
+
q

+g
α
+
p
−
q
)+(x3)2g

α
+
p
+
q
, ? ∈ {−,+}, ∀α. (15)

Let us find the expressions for
√
g
α

= (r
α1 × r

α2) · r
α3. By the first relation in (12), we obtain

√
g
α

=
1

2
εIJ(r

αI
× r
αJ

) · r
α3 =

√
(∼)
g
α

det(g
α

q̃
p

) =

√
(∼)
g
α

det(g
α

Q̃

P
), ∼ ∈ {−,+}, ∀α, (16)

where εIJ , ε
KL

are the Levi-Civita symbols and√
(∼)
g
α

= (r
α1̃
× r
α2̃

) · r
α3̃
, ∼ ∈ {−,+},

√
(−)
g
α

=
√
g
α

∣∣∣
x3=0

,

√
(+)
g
α

=
√
g
α

∣∣∣
x3=1

, ∀α.

In turn, from (16), we have

(∼)

ϑ
α
≡
√
g
α

(∼)
g
α

−1 =
1

2
εIJε

KL
g
α

K̃

I
g
α

L̃

J
= det(g

α

Q̃

P
), ∼ ∈ {−,+}, ∀α. (17)

Note that analogously to (16), in a more general case, we have√
(∼)
g
α

=
1

2

√
(`)
g
α
εIJε

KL
g
α

K̆

Ĩ
g
α

L̆

J̃
=

√
(`)
g
α

det(g
α

Q̆

P̃
), ∼, ` ∈ {−, ∅,+}, ∀α. (18)

It is easy to see from this that

(`∼)

ϑ
α
≡
√

(∼)
g
α

(`)
g
α

−1 =
1

2
εIJε

KL
g
α

K̆
Ĩ g
α

L̆
J̃ = det(g

α

Q̆

P̃
) = det(g

α

q̆

p̃
), `, ∼ ∈ {−, ∅,+}, ∀α. (19)

It is seen that for ∼ = ∅, ` ∈ {−,+}, from (18) we obtain (16), and from (19), we obtain

(17). It is easy to verify that by (19), we have

(`∼)

ϑ
α

=
(∼`)

ϑ
α

−1, `, ∼ ∈ {−,+}, ∀α;
(≈)

ϑ
α

= 1, ∼ ∈ {−,+}, ∀α. (20)

Using (19), we can write relations (17) in the following more detailed form:

(−)

ϑ
α

=

√
g
α

(−)
g
α

−1 = (1− x3)2
(=)

ϑ
α

+ x3(1− x3)g
α

−
I
+
I

+ (x3)2
(∓)

ϑ
α
,

(+)

ϑ
α

=

√
g
α

(+)
g
α

−1 = (1− x3)2
(±)

ϑ
α

+ x3(1− x3)g
α

+
I
−
I

+ (x3)2

(+
+
)
ϑ
α
, ∀α.

(21)

It is easy to express r
α

k, ∀α, through the vectors r
αm̃

or r
α

m̃, ∼ ∈ {−,+}, ∀α. Indeed, taking

into account the first relation of (12) from (11) for ∼ = ∅, we obtain

r
α

k =
1

2

(∼)

ϑ
α

−1εkpqε
lmn

g
α

m̃
p g
α

ñ
q r
α

l̃, ∼ ∈ {−,+}, ∀α, (22)



where εkpq, ε
lmn

are the Levi-Civita symbols. By (22),we introduce the notation

g
α

k
l̃ =

1

2

(∼)

ϑ
α

−1εkpqε
lmn

g
α

m̃
p g
α

ñ
q , g

α

kl̃ =
1

2

(∼)

ϑ
α

−1εkpqεsmng
α

m̃
p g
α

ñ
q g
α

s̃l̃, ∼ ∈ {−,+}, ∀α. (23)

Using this notation, we represent relation (22) in the desired form

r
α

p = g
α

p

q̃
r
α

q̃ = g
α

pq̃r
αq̃
, ∼ ∈ {−,+}, ∀α. (24)

It is easy to see that from the first relation in (23), we have

g
α

K

K̃
=

(∼)

ϑ
α

−1g
α

Ĩ

I
, ⇒ g

α

K̆

K̃
=

(∼`)

ϑ
α

−1g
α

Ĩ

Ĭ
=

(`∼)

ϑ
α
g
α

Ĩ

Ĭ
, ∼ ∈ {−,+}, ∀α. (25)

Note that in writing the second relation in (25), (19) and (20) were taken into account. Also,

let us consider the following objects (matrices):

g
αβ

· q̃
p̆ ·

= r
αp̆
· r
β

q̃, `, ∼ ∈ {−, ∅,+}, ∀α, β, (26)

and the objects obtained from (26) by alternating the indices. We calculate that the number

of such objects is equal to 36. It is easy to see that for α = β (26) contains (13), (15) and

(23). Indeed, from (26), we have

g
α

q̃

p̆
= g
αα

· q̃
p̆ ·

= r
αp̆
· r
α

q̃, `, ∼ ∈ {−, ∅,+}, ∀α, (27)

and alternating the indices, we obviously obtain the objects considered above and also g
α

pq =

r
α

p · r
α

q, ∀α, i.e., in this case, the number of the introduced quantities is equal to 36. It is easy

to see that by (26) and (27), the connections between the families of bases are represented

in the form

r
αp̃

= g
α

n̆

p̃
r
αn̆

= g
αβ

· n̆
p̃ · r

βn̆
, `, ∼ ∈ {−, ∅,+}, ∀α, β, (28)

which remains valid under index alternation. By (28), it we show that the relation holds

g
αβ

· q̆
p̃ ·

= g
αδ

· ?n
p̃ · g

ββ

· q̆
?
n ·
, `, ∼, ? ∈ {−, ∅,+}, ∀α, β, δ. (29)

Differentiating (3)–(5) in xI and taking into account (28), we obtain

r
α+β

+
I

= r
α
−
I

+

α+β∑
ν=α

[
g
ν

−
k
+
I
− g
ν

−
k
−
I

]
r
ν
−
k

= r
α
+
I

+

α+β∑
ν=α+1

[
g
ν

−
k
+
I
− g
ν

−
k
−
I

]
r
ν
−
k
,

∂
I
h(x1, x2) =

N∑
ν=1

∂
I
h
ν
(x1, x2) =

N∑
ν=1

[
g
ν

−
k
+
I

(x1, x2)− g
ν

−
k
−
I
(x1, x2)

]
r
ν
−
k

(x1, x2),

r
N

+
I
(x1, x2) = r

1
−
I
(x1, x2) +

N∑
ν=1

[
g
ν

−
k
+
I

(x1, x2)− g
ν

−
k
−
I
(x1, x2)

]
r
ν
−
k

(x1, x2).

(30)



Naturally, all spatial covariant and contravariant bases constructed above have geometric

characteristics specific for the parametrizations generated by them. Defining the spatial

frames (bases) at each point of the surfaces
(?)

S
α

, ? ∈ {−, ∅, +}, ∀α, we obtain the cor-

responding families of spatial frames (bases), which, in turn generate the corresponding

families of parametrizations. Once more, we note that the structure of
(∼)

S
α

(∼)
g
α

-families frames

(bases), ∼ ∈ {−, ∅,+}, ∀α, is such that the third basis vectors r
α3̃

= h
α

(x1, x2), ∼ ∈ {−, ∅,+},

∀α are not perpendicular to the corresponding base surface
(∼)

S
α

, ∼ ∈ {−, ∅,+}, ∀α in general.

However, in a particular case, they can be perpendicular, and in a more particular case, they

can be unit normal vectors to the surfaces
(∼)

S
α

, ∼ ∈ {−, ∅,+}, ∀α, which are denoted by
(∼)
n
α

,

∼ ∈ {−, ∅,+}, ∀α, respectively.

The corresponding relations for a one-layered thin body under a new parametrization,

as well as for other parametrizations considered in the works, are valid for each layer.

It is seen from the material presented above that in the parametrization of a multilayer

domain considered for each layer, and all the corresponding relations for a one-layered thin

body under a new parametrization in [5–10], as well as for other parametrizations considered

in [5–7,11,60], are hold under the condition that the root letters of quantities entering these

relations must be equipped with the bottom index, which denote the number of the layer

considered. In this connection, we do not consider the problems on the parametrization

of a multilayer domain in detail. In what follows, if necessary, we write the necessary

formulas from the corresponding relations of the works mentioned in this paragraph by the

above method (equipping the root letters of quantities with the bottom index of the layer

considered), and obtain some relations, which do not enter the above works.

1.4. Representation of the unit tensor of the second rank

It is easy to find this representation. Indeed, starting from the usual representation of this

tensor [9, 10,61,62], by (28) and (29), we obtain the relation [1–5]

E˜ = E
α̃

= g
α

n̆

p̃
r
α

p̃r
αn̆

= E
β̃

= g
β

n̆

p̃
r
β

p̃r
βn̆

= g
αβ

· n̆
p̃ · rα

p̃r
βn̆
, ∼, ` ∈ {−, ∅,+}, ∀α, β, (31)

which remains valid under index alternating. As is seen from (31), the quantities (26) and

(27) introduced above represent the components of the unit tensor of the second rank (UTSR)

for a multilayer thin domain of the three-dimensional Euclidean space. Now let us introduce

the following definitions.

Definition 1.1 The parametrization considered above, which is characterized by assigning

the radius-vector of an arbitrary point of any layer α in the form (1) and by the fulfillment

of relation (3), is called the new parametrization of a multilayer thin domain.



Definition 1.2 The components g
αβ

· n̆
p̃ · , for p̃ ∈ {−p, p, +

p}, n̆ ∈ {−n, n, +
n}, ∀α 6= β, and also

the components g
α

· n̆
p̃ · , ∀α, for ∼ 6=`, where ∼,` ∈ {+, ∅,−}, and the images obtained from

them by index alternating are called the components of the unit second-rank tensor translation

under the new parametrization of a multilayer thin domain.

Definition 1.3 The components g
αβ

· ·
p̃q̃

, g
αβ

· q̃
p̃ ·

, g
αβ

p̃q̃
· · for ∼ = − (∼ = +), ∀α, β, and the

components of the translation g
αβ

· ·
p̃q̆

, g
αβ

· q̆
p̃ ·

, for ∼ = +,` = − (∼ = −,` = +), ∀α, β, are

called the basic components of the second-rank unit tensor under the new parametrization of

a multilayer thin domain if as as base surface, the inner (exterior) base surface of layers are

taken.

It is easy to find the expressions for g
αβ

pq
via basic translation components. Indeed, by (14),

(26) and (29), we have

g
αβ

pq
= g
α

m̆
p g
β

ñ
q g
αβ

m̆ñ
= (1− x3)2 g

αβ
−
p
−
q

+ x3(1− x3)
(
g
αβ

−
p
+
q

+ g
αβ

+
p
−
q

)
+ (x3)2 g

αβ
+
p
+
q
, (32)

where ∼, ` ∈ {−,+}, ∀α, β. Whence, for α = β, we obtain (15).
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