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Abstract: For solving biharmonic problems with application to radar imaging,
we need to solve boundary value problems for the Poisson equation using the
scattering model. In addition, no information about boundary values is avail-
able. In order to select suitable solutions, we solve the Poisson equation under
the side condition that some criterion function, usually a Sobolev norm, should
be minimized. Under appropriate smoothness assumptions these problems may
be reformulated as boundary value problems for the biharmonic equation.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with connected boundary ∂Ω, and

Ω ∪ ∂Ω = Ω = is the closure of Ω. We consider the following boundary value problems for

the biharmonic equation in Lipschitz domains:

∆2u(x) = f(x), x ∈ Ω (1)

with the Navier boundary conditions

u = g, Mu ≡ σ∆u+ (1− σ)
∂2u

∂ν2
= h1, on ∂Ω, (2)

or the Neumann boundary conditions

Mu ≡ σ∆u+(1−σ)
∂2u

∂ν2
= h1, Nu ≡ ∂∆u

∂ν
+(1−σ) div∂Ω(∂2u ·ν)∂Ω = h2, on ∂Ω,

(3)

where ν is the outward unit normal to ∂Ω, and 1
n−1

< σ < 1, σ is a constant known as

the Poisson ratio. A unique solution u (modulo linear functions) is obtained in the class of

solutions with non-tangential maximal function of the second-order derivatives in Lp(∂Ω).

The corresponding Poisson problem is well-posed unless σ = 1.

Note that standard elliptic regularity results are available in [3]. This monograph

covers higher order linear and nonlinear elliptic boundary value problems, mainly with the

biharmonic or polyharmonic operator as leading principal part. Underlying models and, in

particular, the role of different boundary conditions are explained in detail. As for linear



problems, after a brief summary of the existence theory and Lp and Schauder estimates, the

focus is on positivity. The required kernel estimates are also presented in detail.

Boundary value problems for a biharmonic (polyharmonic) equation in unbounded do-

mains are studied in [7]– [12], in which the condition of the boundedness of the following

weighted Dirichlet integral of solution is finite, namely∫
Ω

|x|a|∂u|2 dx <∞, a ∈ R,

where a ∈ R is a fixed number and |∂u|2 denotes the Frobenius norm of the Hessian matrix

of u. The author in [7]– [12] investigates the dimension of the space of the solutions to

the boundary value problems for a biharmonic (polyharmonic) equation, providing explicit

formulas which depends on n and a.

Elliptic problems with parameters in the boundary conditions are called Steklov prob-

lems from their first appearance in [18]. In the case of the biharmonic operator, these

conditions were first considered in [1], [6] and [16], who studied the isoperimetric properties

of the first eigenvalue.

In [2] the boundary value problems for the biharmonic equation and the Stokes system

are studied in a half space, and, using the Schwartz reflection principle in weighted Lq -space

the uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

Notation: C∞0 (Ω) is the space of infinitely differentiable functions in Ω with compact

support in Ω; Hm(Ω) is the Sobolev space obtained by the completion of C∞(Ω) with

respect to the norm

‖u(x);Hm(Ω)‖ =

∫
Ω

∑
|α|≤m

|∂αu(x)|2dx

1/2

, m = 1, 2,

where ∂α ≡ ∂|α|

∂x
α1
1 ...∂x

αn
n

, α = (α1, . . . , αn) is a multi-index, αi ≥ 0 are integers, and

|α| = α1 + · · ·+ αn;
◦
H
m

(Ω) is the space obtained by the completion of C∞0 (Ω) with respect to the norm

||u(x);Hm(Ω)||;

Definition 1 A solution of the homogenous biharmonic equation (1) in Ω is a function

u ∈ H2(Ω) such that for every function ϕ ∈ C∞0 (Ω), the following integral identity holds:∫
Ω

∆u∆ϕdx =

∫
Ω

f ϕ dx.

In Section 2 we will derive the mathematical model used for describing the radar process.

In our parametrization the unknown is the height function H. As will be shown in Section 2



the height function is determined in two steps. In the first step L(H), with L a certain second-

order differential operator, is determined. After retrieving H the equation L(H) = f must

be solved. To a good approximation the operator L can be replaced by the Laplacian. So

the second step simply consists of solving the Poisson equation over some smooth bounded

domain, usually a rectangular region in the plane. The problem here is that no natural

boundary conditions are available.

In Section 3 we discuss different possibilities of defining a unique height function. Es-

sentially our approach consists in minimizing some norm of the solution provided that it also

satisfies the Poisson equation. In particular we consider the L2- and H1-norms. We also

show how these two optimization problems may be reformulated as boundary value problems

for the biharmonic equation.

As applications, in [14], the eigenvalue problems of the symmetric tensor-block matrix

of any even rank and sizes 2 × 2 is studied. Some definitions and theorems are formu-

lated concerning the tensor-block matrix. Formulas expressing the classical invariants of the

tensor-block matrix of any even rank and sizes 2×2 through the first invariants of the powers

of this tensor-block matrix are given. As a special case, we consider the tensor-block matrix

of the elastic modulus tensors. The canonical representation of the tensor-block matrix is

given. Using this representation, we get the canonical forms of the elastic strain energy and

the constitutive relations. Besides, a classification of the micropolar linear elastic anisotropic

bodies that do not have a center of symmetry is given. In [15], some questions about the

parametrization of three-dimensional thin body with one small size under an arbitrary base

surface and the changing of transverse coordinate from 1 to 1 are considered. The vector

parametric equation of the thin body domain is given. In particular, we have defined the

various families of bases and geometric characteristics generated by them.

2. A scattering model

Here we will briefly discuss the mathematical inverse problem to be resolved in order to

recover the ground topography height function from radar data. First cylindrical coordinates

(r, ϕ, z) are introduced according to Fig. 1, where it is understood that the aircraft is flying

at a constant speed along the z-axis. Further r denotes the distance from a point on the

ground surface to the z-axis and ϕ is the angle between radius vector and a horizontal plane

through the z-axis. Then the ground surface may be described by a function H(r, z) through

the equation

H(r, z)

r
− ϕ = 0. (4)

When r is large, −H(r, z) is approximately a Cartesian height function. Fig. 2 shows



a top view of the same scene. We have also indicated an aspect vector from the aircraft to

some point on the ground, forming an angle θ with a vertical plane through the aircraft.

Normalized to unit length, the aspect vector is denoted by n̂.

Accordingly

n̂ = cos θ r̂(ϕ) + sin θ ẑ. (5)

Here r̂(ϕ) denotes the cylindrical unit basis vector corresponding to the r-coordinate for

the ground point as shown in the Fig. 2. For a point on the ground surface with coordinates

(r, ϕ, z) we obtain, from Eq. (4), the following expression for the ground surface normal m̄,

m̄ = grad

(
H(r, z)

r
− ϕ

)
=
∂(H/r)

∂r
r̂ +

1

r

∂H

∂z
ẑ − 1

r
ϕ̂. (6)

Let m̂ denote the normalized normal. Then

m̂ ◦ n̂ =

(
r cos θ

∂(H/r)

∂r
+ sin θ

∂H

∂z

)
/

√
1 +

(
∂(H/r)

∂r

)2

+

(
∂H

∂z

)2

. (7)

Note that (r, ϕ, z) in Eq. (7) are related to the ground surface point and not to the

position of the aircraft.

Let (z0, 0) be a position of the aircraft and R the distance to some point on the surface.

According to Fig. 3 the coordinates (r, z) are then equal to (z0 + R sin θ,R cos θ). Next, to

obtain a scattering model we will assume that the reflectivity from a ground surface element

(see Fig. 4) is

≈ m̂ ◦ n̂
R

dRdθ. (8)

From Fig. 4, where a vertical plane through (z0, 0) (the aircraft) and the ground point

(z0 + R sin θ,R cos θ) is displayed, we conclude that the solid angle dΩ under which the

surface element dS is seen from the antenna is approximately

dR cosαRddθ

R2
= −m̂ ◦ n̂

R
dRdθ.

In expression (8) we are consequently assuming that the local reflectivity is proportional to

the solid angle occupied by the infinitesimal surface element dS. The total reflected signal

G(R, z0)

from all points at a distance R from the antenna may now be obtained by integration

over the circle C(R, z0) = {(r, z) : (z − z0)2 + r2 = R2} in Fig. 3.

G(R, z0)dR = c

∫ π

−π

m̂ ◦ n̂(z0 +R cos θ,R sin θ)

R
dθdR



Figure 1. The ground surface measured at a fixed aircraft position.

Figure 2. The measuring geometry as seen from above.

Figure 3. The coordinate system used to describe an infinitesimal surface element, dS.



Figure 4. The infinitesimal surface element, dS, as it is seen from the aircraft.

i.e.

RG(R, z0) = c

∫ π

−π
m̂ ◦ n̂(z0 +R cos θ,R sin θ)dθ. (9)

Assuming that m̂ ◦ n̂ is small Eq. (7) may be replaced by

m̂ ◦ n̂ = r cos θ
∂(H/r)

∂r
+ sin θ

∂H

∂z
.

By inserting this into Eq. (9) we get, after multiplying by R,

R2G(R, z0) = c

∫ π

−π

(
rR cos θ

∂(H/r)

∂r
+R sin θ

∂H

∂z

)
dθ.

Using the parametrization

z = z0 +Rsinθ, r = Rcosθ,

this may be rewritten as a curve integral over C(R, z0), with dz = R cos θdθ and dr =

−R sin θdθ,

R2G(R, z0) = c

∫
C(R,z0)

(
r
∂(H/r)

∂r
dz − ∂H

∂z
dr
)
. (10)

By applying Green’s formula we get

R2G(R, z0) = c

∫∫
D(R,z0)

L(H)(r, z)dzdr, (11)

where D is the disc, D(R, z0) = {(r, z) : (z − z0)2 + r2 ≤ R2} and

L(H) =
∂

∂r

(
r
∂

∂r
(H/r)

)
+

∂2

∂z2
(H). (12)



The problem of finding the height function H from radar data G(r, z) may now be

divided into two parts.

(a) First solve the integral equation (11) for L(H)(r, z) = f(r, z).

(b) Next solve the partial differential equation

L(H) = f (13)

forH. We note that if r is large and if m̂◦n̂ is small it is reasonable to make the approximation

L(H) ≈ ∂2H

∂r2
+
∂2H

∂z2
= ∆H

so that Eq. (13) becomes Poisson’s equation. To consider the first problem (a), both members

in Eq. (11) are differentiated with respect to R. Then we get

1

R

d

dR
(R2G(R, z0)) = c

∫ π

−π
L(H)(z0 +R cos ν,R sin ν)dν,

where the right-hand side is proportional to the average of L(H) over the circle C(R, z0). In

[2] an explicit solution is given for this problem of recovering the function L(H)(r, z) when

the average of L(H) is known for all circles C(R, z0) with center on the z-axis and with

arbitrary radius R. The solution formula is

L(H)(F,F )(σ, ω) ∼ |ω|
[ 1

R

d

dR
{R2G(r, z)}

](F,H0)
(σ,
√
ω2 + σ2). (14)

Here the notation (F, F ) means that we have taken the Fourier transform with respect to

both the variables and (F,H0) means that we have taken Fourier transform with respect

to the first variable and the Hankel-zero transform with respect to the second. After some

calculations Eq. (14) may be rewritten

L(H)(F,F )(σ, ω) ∼ |ω|
√
ω2 + σ2[RG(r, z)](F,H1)(σ,

√
ω2 + σ2). (15)

Formula (15) may now be used in order to recover the function L(H) in spatial coordi-

nates. Of course, approximating L(H) by ∆H we could rewrite Eq. (15) as

H(F,F )(σ, ω) ∼ |ω| 1√
ω2 + σ2

[RG(r, z)](F,H1)(σ,
√
ω2 + σ2), (16)

where H1 denotes that we have taken the Hankel-one transform with respect to the second

variable. Then we could obtain H directly by a two timensional Fourier transform. However,

our solution might be expected to have errors caused by, e.g. noisy radar data and errors

caused by the particular numerical implementation of the inversion formula (14) (or Eq. (15))

and therefore we would rather prefer to divide the solution procedure into the two steps

described above and to use the second step, the solution of Poisson’s equation, so that we

perform some kind of regularization of the final solution. Note also that by using Eq.(16) as

our solution formula we have tacitly assumed periodic boundary conditions for the Poisson

equation.



3. Solution concepts for the Poisson equation

In the domain Ω we consider the following boundary value problems for the Poisson equation

∆u = f(x), x ∈ Ω (17)

with the boundary conditions

u = g on ∂Ω, (18)

and

u = g, ∇u · ν = h on ∂Ω (19)

Finally for Ω a rectangular region in, e.g., the plane

Ω = {(x, y) : a < x < b, c < y < d}, (20)

there may be the following boundary conditions

u(a, y) = u(b, y), u(x, c) = u(x, d), (21)

and u(a, y) = u(b, y), u(x, c) = u(x, d),

ux(a, y) = ux(b, y), uy(x, c) = uy(x, d)
(22)

Lemma 1 Let u and w be solutions of Eq. (17) satisfying the Dirichlet boundary conditions

(18) with g = g1 abd g = g2, respectively. Assume f ∈ C(Ω), g1, g2 ∈ C(∂Ω) and that ∂Ω is

Lipschitz. Then

||u− w||∞,Ω ≤ ||g1 − g2||∞,∂Ω.

Hence the Dirichlet problem is well posed in the sence that small pertutbations in the

boundary values result in small perturbations in the solution.

We now consider a different way to select a solution to Eq. (17). Here we use a criterion

function and optimize this criterion over the set of solutions to the Poisson equation. As

discussed in Section 2 the physical interpretation of u(x, y) is a surface function. A possibility

is to pick out the smoothest surface (in some sense) that fulfills Eq. (17). We propose to use

Sobolev space norms as criterion functions. Denote by Vf,i the following set:

Vf,i = {u ∈ Hi(Ω) : ∆u = f, f ∈ L2(Ω)}, i = 0, 1, 2, (23)

where H0(Ω) = L2(Ω).

The equality ∆u = f is to be interpreted in the sense of distributions. i.e.,∫
Ω

u∆ϕdx =

∫
Ω

fϕ dx, ∀ϕ ∈ C∞0 (Ω).



Lemma 2 Vf,i is a closed, convex and nonempty set of Hi(Ω).

Let α be a multiindex and β1 > 0 a given parameter. We consider the following opti-

mization problems:

minu∈Vf,0 ||u||
2
2, (24)

and

minu∈Vf,1 ||u||
2
2 + β1

∑
|α|=1

||∂αu||22. (25)

Theorem 1 Problems (24) and (25) have unique solutions u0 and u1 respectively.

We conclude this section by a theorem relating the solution of problems (24) and (25).

First we recall the following definition.

Definition 2 Ω ⊂ Rn is called star-shapet if there exists x0 ∈ Ω such that for all x ∈ Ω the

set {t ∈ R : x0 + t(x− x0) ∈ Ω} is an interval.

Remark 1 All convex sets are star-shaped. Rectangles Ω appearing in our applications are

thus star-shaped.

Theorem 2 Assume that Ω ⊂ Rn is open, bounded and star-shaped. If u1,β1 ∈ H1(Ω)

denotes the solution of problem (25) with the parameter β1 > 0 and if u0 ∈ L2(Ω) denotes

the solution of problem (24), then

u1,β1 → u0 in L2(Ω) as β1 → 0 + .
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