Nonclassical relaxation oscillations in neurodynamicsстатья
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 13 февраля 2017 г.
Аннотация:A modification of the FitzHugh–Nagumo model from neuroscience has been proposed. This model is a singularly perturbed system of ordinary differential equations with a fast variable and a slow variable. The existence and stability of a nonclassical relaxation cycle in this system have been studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a delta-like function. A one-dimensional circle of unidirectionally coupled neurons has been considered. The existence of an arbitrarily large number of traveling waves for this chain has been shown. In order to illustrate the increase in the number of stable traveling waves, numerical methods were involved.