Elliptic polytopes and invariant norms of linear operatorsстатья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 15 февраля 2024 г.
Аннотация:Elliptic polytopes are convex hulls of several concentric plane ellipses in Rd . They arise in applications as natural generalizations of usual polytopes. In particular, they define invariant convex bodies of linear operators, optimal Lyapunov norms for linear dynamical systems, etc. To construct elliptic polytopes one needs to decide whether a given ellipse is contained in the convex hull of other ellipses. We analyse the computational complexity of this problem and show that for d= 2 , 3 , it admits an explicit solution. For larger d, two geometric methods for approximate solution are presented. Both use the convex optimization tools. The efficiency of the methods is demonstrated in two applications: the construction of extremal norms of linear operators and the computation of the joint spectral radius/Lyapunov exponent of a family of matrices.